In a previous study the biodegradation of hexabromocyclododecane (HBCD) was reported to occur under realistic environmental concentrations in soils and freshwater aquatic sediments with biotransformation half-lives ranging from approximately 2 days to 2 months. In this study we extend our knowledge as to the environmental behavior of HBCD with respect to the fate of the three major diastereomers of HBCD (alpha, beta, and gamma) as well as to the identification of major intermediate metabolites formed during degradation. Substantial biological transformation of the alpha-, beta-, and gamma-[14C]HBCD diastereomers was observed in wastewater (i.e., digester) sludge and in freshwater aquatic sediment microcosms prepared under aerobic and anaerobic conditions. Concomitant with the loss of [14C]HBCD in these matrixes there was a concurrent production of three [14C]products. Using a combination of high performance liquid chromatography atmospheric pressure photoionization mass spectrometry and gas chromatography electron impact ionization mass spectrometry these metabolites were identified as tetrabromocyclododecene, dibromocyclododecadiene, and cyclododecatriene. We propose that HBCD is sequentially debrominated via dihaloelimination where at each step there is the loss of two bromines from vicinal carbons with the subsequent formation of a double bond between the adjacent carbon atoms. These results demonstrate that microorganisms naturally occurring in aquatic sediments and anaerobic digester sludge mediate complete debromination of HBCD.
The biodegradability of bisphenol A (BPA) was assessed in surface waters from seven different rivers across the United States and Europe. Rapid biodegradation of BPA was observed in all rivers following lag phases ranging from 2 to 4 d. Biodegradation half-lives for BPA were typically less than 2 d following the lag phase. Mineralization of BPA was observed in all river waters, with average carbon dioxide yields of approximately 76% of the theoretical maximum (range 59-103%) at the end of the incubation period (< or = 18 d). Short half-lives (0.5 to 3 d) were noted for BPA biodegradation in river waters regardless of geographic location, sampling site (i.e., upstream vs downstream of wastewater outfalls), sediment addition (< or = 0.05%), and initial test chemical concentration (50-5,500 microgram/L). Subsequent studies conducted at environmentally relevant concentrations (0.05 and 0.5 microgram/L) also indicated short half-lives (3-6 d) for BPA and support the extrapolation of the half-lives measured in this study over a wide range of environmental concentrations. The fact that BPA was degraded rapidly in surface waters taken from diverse locations in the United States and Europe as well as in studies recently conducted in Japan suggests that BPA degrading microorganisms are widely distributed in nature. These observations provide clear evidence that BPA is not persistent in the aquatic environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.