The east-west Minas fault zone, separating the Early Palaeozoic Meguma and Avalon terranes of the Appalachians, experienced dextral strike-slip motion during the Carboniferous. Abundant oblique contractional structures indicate localized dextral transpression, immediately south of the zone, probably associated with a restraining bend. Subsurface data indicate that the deformed Horton Group clastic rocks are thrust above younger Windsor Group evaporites.Excellent exposures on wave-cut platforms of the Bay of Fundy show structures developed in transpression, including NE-trending upright and inclined folds; south-verging thrust and reverse faults; and NW-striking normal faults. Northwest-trending boudins, which are perpendicular and slightly rotated in a clockwise sense relative to fold hinges, provide a field indicator for dextral transpression. The earliest folds (F 1 ) are curvilinear and may have formed by deformation of wet sediment. F 2 tectonic folds show weak axial-planar cleavage. Locally, these have been rotated into reclined orientations; spectacular downward-facing folds are probably due to refolding by more east-west F 3 folds. The structures observed are consistent with pure-shear-dominated transpression, with the local angle of convergence a increasing over time. This strain history is compatible with progressive strain partitioning, probably associated with the spreading of topography developed at the restraining bend. Regional geological settingSouth of the Minas fault zone, the Meguma terrane is characterized by a thick (.10 km) succession of Cambrian -Ordovician metasedimentary rocks, the Meguma Group, overlain by a Late Ordovician to
A major zone of deformation affects Early Carboniferous rocks in the southern part of the Maritimes Basin of Nova Scotia, close to the boundary between the Avalon and Meguma terranes of the Appalachians. Field relationships at Cheverie indicate thrusting of Tournaisian Horton Group clastics over Viséan Windsor Group carbonates, evaporites, and clastics, a relationship confirmed by the Cheverie #01 well. Mapped relationships to the south indicate that a system of thrusts, here termed the Kennetcook thrust system, climbs upsection to the southeast, becoming a décollement within Windsor Group evaporites. Industry seismic profiles clearly show deformed Windsor Group, and include fold and fault structures indicative of evaporite flow and solution collapse. Below the Windsor Group, half-grabens filled with Horton Group are clearly imaged; offsets at graben-related faults show that these structures were inverted during later shortening. Above the Windsor Group, less deformed rocks of the Pennsylvanian Scotch Village Formation (Cumberland Group) fill minibasins created by the withdrawal or solution of deformed Windsor evaporites. The timing of thrusting is constrained by these relationships and by crosscutting intrusions to a narrow interval around the Mississippian–Pennsylvanian boundary prior to ∼315 Ma. Deformation was probably related to dextral transpression along the former Avalon–Meguma boundary. Depending on how shortening was transmitted to the southeast, up to 1500 km2 of southern mainland Nova Scotia may be underlain by tectonically transported rocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.