Left ventricular hypertrophy is recognized as an independent risk factor for cardiovascular morbid events. The primary mechanisms responsible for stimulating it are unknown. Epidemiological theories suggest that left ventricular hypertrophy is a continuous variable with no threshold, while morphological studies argue that it is the structure, or quality, and function of the myocardium (and therefore non-continuous), not the quantity of the myocardial mass, that poses the cardiovascular risk. Although left ventricular hypertrophy has been classically viewed as an adaptive response of the cardiovascular system to an imposed load, it has been demonstrated that haemodynamic overloading in selected hypertensive patients is not the sole determinant of left ventricular structure and function. Pathological and physiological states of left ventricular hypertrophy have been described primarily using criteria focusing on normal chamber performance and oxygen delivery as well as the reversibility of the hypertrophy once the overload is removed. Both states are also defined by the nature of the imposed load and the resulting myocardial adaptations. This review addresses the pathological and physiological states of left ventricular hypertrophy, the hypertrophy patterns, and the corresponding structural and functional characteristics, together with some of the biochemical factors thought to influence remodelling.
The purpose of this investigation was to examine blood pressure responses during recovery from resistance exercise and cycling. Seven normotensive volunteers (5 males, 2 females) were studied. Resistance exercise consisted of three sets of five exercises (arm curl, hamstring curl, squat, 'lat pull' and bench press) on four occasions: (1) twice using 40% one-repetition maximum (1RM) for 20-25 repetitions, and (2) twice using 70% 1RM for 8-10 repetitions. The subjects also cycled for 25 min at 70% of heart rate reserve on two occasions. Measurements of recovery systolic and diastolic blood pressure were made at 2, 5, 10, 15, 30 and 60 min post-exercise with subjects in the seated position. Analysis of variance with repeated measures revealed that there were no significant differences between recovery blood pressures after the cycling or resistance exercise treatments. Average systolic blood pressure after 2 min of recovery was elevated (115 +/- 2 mmHg, P < 0.0001) and diastolic blood pressure was depressed (48 +/- 3 mmHg, P < 0.0001) in comparison to previously determined baseline values. Systolic blood pressure at 5 min and diastolic blood pressure at 15 min post-exercise were not significantly lower than resting baseline values, and remained so after 60 min of recovery. It was concluded that different intensities of resistance exercise produce the same blood pressure response in recovery and that these changes were approximately equal to those produced by cycling.
BackgroundDietary supplements containing L-arginine are marketed to improve exercise performance, but the efficacy of such supplements is not clear. Therefore, this study examined the efficacy of acute ingestion of L-arginine alpha-ketoglutarate (AAKG) muscular strength and endurance in resistance trained and untrained men.MethodsEight resistance trained and eight untrained healthy males ingested either 3000mg of AAKG or a placebo 45 minutes prior to a resistance exercise protocol in a randomized, double-blind crossover design. One-repetition maximum (1RM) on the standard barbell bench press and leg press were obtained. Upon determination of 1RM, subjects completed repetitions to failure at 60% 1RM on both the standard barbell bench press and leg press. Heart rate was measured pre and post exercise. One week later, subjects ingested the other supplement and performed the identical resistance exercise protocol.ResultsOur data showed statistical significant differences (p<0.05) between resistance trained and untrained males for both 1RM and total load volume (TLV; multiply 60% of 1RM times the number of repetitions to failure) for the upper body. However, 1RM and TLV were not statistically different (p>0.05) between supplementation conditions for either resistance trained or untrained men in the bench press or leg press exercises. Heart rate was similar at the end of the upper and lower body bouts of resistance exercise with AAKG vs. placebo.ConclusionThe results from our study indicate that acute AAKG supplementation provides no ergogenic benefit on 1RM or TLV as measured by the standard barbell bench press and leg press, regardless of the subjects training status.
The purpose of this study was to investigate the effects of carbohydrate ingestion on force output and time to exhaustion using single leg static contractions superimposed with brief periods of electromyostimulation. Six trained male subjects participated in a randomized, counterbalanced, double-blind study. The subjects were randomly assigned to placebo (PL) or carbohydrate (CHO). The subjects in CHO consumed 1 g of carbohydrate per kilogram of body mass loading dose and 0.17 g of carbohydrate per kilogram of body mass every 6 minutes during the exercise protocol. The PL received an equal volume of a solution made of saccharin and aspartame. The exercise protocol consisted of repeated 20-second static contractions of quadriceps muscle at 50% maximal voluntary contraction followed by 40-second rest until failure occurred. Importantly, the force output during quadriceps maximal voluntary contraction strength with superimposed electromyostimulation was measured in the beginning and every 5 minutes during the last 3 seconds of static contractions throughout the exercise protocol. Venous blood samples were taken preexercise, immediately postexercise, and at 5 minutes postexercise and analyzed for blood lactate. Our results indicate that time to exhaustion (PL = 16.0 ± 8.1 minutes; CHO = 29.0 ± 13.1 minutes) and force output (PL = 3,638.7 ± 524.5 N; CHO = 5,540.1 ± 726.1 N) were significantly higher (p < 0.05) in CHO compared with that in PL. Data suggest that carbohydrate ingestion before and during static muscle contractions can increase force output and increase time to exhaustion. Therefore, our data suggest that carbohydrate supplementation before and during resistance exercise might help increase the training volume of athletes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.