Dioxins comprise a group of compounds which contain a double aromatic ring-like structure. They are among the most prevalent and toxic environmental pollutants. Accumulation of dioxins in human tissues poses a potential threat to human health. Currently, analytical chemical procedures dominate dioxin-detection protocols. In this study, we established a fluorescence resonance energy transfer (FRET)-based dioxin-detection bioassay. Aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT) fused-cyan fluorescent protein (CFP) and -yellow fluorescent protein (YFP) constructed were transiently co-transfected into rat hepatoma cell line, H4IIEC3 cells. Our results showed that no FRET signals were detected in AHR-CFP- and ARNT-YFP-transfected H4IIEC3 cells. However, dioxin treatments upregulated FRET signals in these transfected cells in a dose-dependent manner. This work highlighted the potential of FRET technique in the detection of dioxin-like compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.