We consider the spatially inhomogeneous Landau equation with initial data that is bounded by a Gaussian in the velocity variable. In the case of moderately soft potentials, we show that weak solutions immediately become smooth, and remain smooth as long as the mass, energy, and entropy densities remain under control. For very soft potentials, we obtain the same conclusion with the additional assumption that a sufficiently high moment of the solution in the velocity variable remains bounded. Our proof relies on the iteration of local Schauder-type estimates.
Abstract. We establish a priori upper bounds for solutions to the spatially inhomogeneous Landau equation in the case of moderately soft potentials, with arbitrary initial data, under the assumption that mass, energy and entropy densities stay under control. Our pointwise estimates decay polynomially in the velocity variable. We also show that if the initial data satisfies a Gaussian upper bound, this bound is propagated for all positive times.
We consider the Cauchy problem for the spatially inhomogeneous Landau equation with soft potentials in the case of large (i.e. non-perturbative) initial data. We construct a solution for any bounded, measurable initial data with uniform polynomial decay in the velocity variable, and that satisfies a technical lower bound assumption (but can have vacuum regions). For uniqueness in this weak class, we have to make the additional assumption that the initial data is Hölder continuous. Our hypotheses are much weaker, in terms of regularity and decay, than previous large-data well-posedness results in the literature. We also derive a continuation criterion for our solutions that is, for the case of very soft potentials, an improvement over the previous state of the art.
Résumé
Nous considérons le problème de Cauchy pour l'équation de Landau non-homogène en espace avec potentiels mous dans le cas de grandes (i.e. non perturbatrices) données initiales. Nour construisons une solution pour toute donnée initiale bornée et mesurable à décroissance polynomiale uniforme dans la variable de vitesse, et qui satisfait une hypothèse technique de borne inférieure (il est toujours permis d'avoir des régions de vide). Pour être unique dans cette famille générale, nous devons supposer que les données initiales sont Hölder continues. Nos hypothèses sont beaucoup plus faibles, en termes de régularité et de décroissance, que les résultats de la littérature sur le caractère bien-posé dans le cas de grandes données. Nous dérivons également un critère de continuation pour nos solutions qui est, pour les potentiels très mous, une amélioration par rapport à l'état de l'art.
We consider the Cauchy problem for the spatially inhomogeneous non-cutoff Boltzmann equation with polynomially decaying initial data in the velocity variable. We establish short-time existence for any initial data with this decay in a fifth order Sobolev space by working in a mixed L 2 and L ∞ space that allows to compensate for potential moment generation and obtaining new estimates on the collision operator that are well-adapted to this space. Our results improve the range of parameters for which the Boltzmann equation is well-posed in this decay regime, as well as relax the restrictions on the initial regularity. As an application, we can combine our existence result with the recent conditional regularity estimates of Imbert-Silvestre (arXiv:1909.12729 [math.AP]) to conclude solutions can be continued for as long as the mass, energy, and entropy densities remain under control. This continuation criterion was previously only available in the restricted range of parameters of previous well-posedness results for polynomially decaying initial data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.