Most measures of networks are based on the nodes, although links are also elementary units in networks and represent interesting social or physical connections. In this work we suggest an option for exploring networks, called the h-strength, with explicit focus on links and their strengths. The h-strength and its extensions can naturally simplify a complex network to a small and concise subnetwork (h-subnet) but retains the most important links with its core structure. Its applications in 2 typical information networks, the paper cocitation network of a topic (the h-index) and 5 scientific collaboration networks in the field of "water resources," suggest that h-strength and its extensions could be a useful choice for abstracting, simplifying, and visualizing a complex network. Moreover, we observe that the 2 informetric models, the Glänzel-Schubert model and the Hirsch model, roughly hold in the context of the h-strength for the collaboration networks.
As with articles and journals, the customary methods for measuring books' academic impact mainly involve citations, which is easy but limited to interrogating traditional citation databases and scholarly book reviews. Researchers have attempted to use other metrics, such as Google Books, libcitation, and publisher prestige. However, these approaches lack content-level information and cannot determine the citation intentions of users. Meanwhile, the abundant online review resources concerning academic books can be used to mine deeper information and content utilizing altmetric perspectives. In this study, we measure the impacts of academic books by multi-granularity mining online reviews, and we identify factors that affect a book's impact. First, online reviews of a sample of academic books on Amazon.cn are crawled and processed. Then, multi-granularity review mining is conducted to identify review sentiment polarities and aspects' sentiment values. Lastly, the numbers of positive reviews and negative reviews, aspect sentiment values, star values, and information regarding helpfulness are integrated via the entropy method, and lead to the calculation of the final book impact scores. The results of a correlation analysis of book impact scores obtained via our method versus traditional book citations show that, although there are substantial differences between subject areas, online book reviews tend to reflect the academic impact. Thus, we infer that online reviews represent a promising source for mining book impact within the altmetric perspective and at the multi-granularity content level. Moreover, our proposed method might also be a means by which to measure other books besides academic publications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.