Chemosensing is a primary sense in nature, however little is known about its mechanism in Chelicerata. As a model organism we used the mite Varroa destructor, a key parasite of honeybees. Here we describe a transcriptomic analysis of two physiological stages for the Varroa foreleg, the site of primary olfactory organ. The transcriptomic analysis revealed transcripts of chemosensory related genes belonging to several groups. These include Niemann-Pick disease protein, type C2 (NPC2), gustatory receptors (GRs), ionotropic receptors (IRs), sensory neuron membrane proteins (SNMPs) and odorant binding proteins (OBP). However, no insect odorant receptors (ORs) and odorant co-receptors (ORcos) were found. In addition, we identified a homolog of the most ancient IR co-receptor, IR25a, in Varroa as well as in other members of Acari. High expression of this transcript in the mite’s forelegs, while not detectable in the other pairs of legs, suggests a function for this IR25a-like in Varroa chemosensing.
The tight synchronization between the life cycle of the obligatory parasitic mite Varroa destructor (Varroa) and its host, the honeybee, is mediated by honeybee chemical stimuli. These stimuli are mainly perceived by a pit organ located on the distal part of the mite’s foreleg. In the present study, we searched for Varroa chemosensory molecular components by comparing transcriptomic and proteomic profiles between forelegs from different physiological stages, and rear legs. In general, a comparative transcriptomic analysis showed a clear separation of the expression profiles between the rear legs and the three groups of forelegs (phoretic, reproductive and tray‐collected mites). Most of the differentially expressed transcripts and proteins in the mite’s foreleg were previously uncharacterized. Using a conserved domain approach, we identified 45 transcripts with known chemosensory domains belonging to seven chemosensory protein families, of which 14 were significantly upregulated in the mite’s forelegs when compared to rear legs. These are soluble and membrane bound proteins, including the somewhat ignored receptors of degenerin/epithelial Na+ channels and transient receptor potentials. Phylogenetic clustering and expression profiles of the putative chemosensory proteins suggest their role in chemosensation and shed light on the evolution of these proteins in Chelicerata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.