Meta-Interpretive Learners, like most ILP systems, learn by searching for a correct hypothesis in the hypothesis space, the powerset of all constructible clauses. We show how this exponentially-growing search can be replaced by the construction of a Top program: the set of clauses in all correct hypotheses that is itself a correct hypothesis. We give an algorithm for Top program construction and show that it constructs a correct Top program in polynomial time and from a finite number of examples. We implement our algorithm in Prolog as the basis of a new MIL system, Louise, that constructs a Top program and then reduces it by removing redundant clauses. We compare Louise to the state-of-the-art search-based MIL system Metagol in experiments on grid world navigation, graph connectedness and grammar learning datasets and find that Louise improves on Metagol’s predictive accuracy when the hypothesis space and the target theory are both large, or when the hypothesis space does not include a correct hypothesis because of “classification noise” in the form of mislabelled examples. When the hypothesis space or the target theory are small, Louise and Metagol perform equally well.
In Meta-Interpretive Learning (MIL) the metarules, second-order datalog clauses acting as inductive bias, are manually defined by the user. In this work we show that second-order metarules for MIL can be learned by MIL. We define a generality ordering of metarules by θ-subsumption and show that user-defined sort metarules are derivable by specialisation of the most-general matrix metarules in a language class; and that these matrix metarules are in turn derivable by specialisation of third-order punch metarules with variables that range over the set of second-order literals and for which only an upper bound on their number of literals need be user-defined. We show that the cardinality of a metarule language is polynomial in the number of literals in punch metarules. We re-frame MIL as metarule specialisation by resolution. We modify the MIL metarule specialisation operator to return new metarules rather than first-order clauses and prove the correctness of the new operator. We implement the new operator as TOIL, a sub-system of the MIL system Louise. Our experiments show that as user-defined sort metarules are progressively replaced by sort metarules learned by TOIL, Louise's predictive accuracy is maintained at the cost of a small increase in training times. We conclude that automatically derived metarules can replace user-defined metarules. IntroductionMeta-Interpretive Learning (MIL) (Muggleton et al., 2014;Muggleton and Lin, 2015) is a new approach to Inductive Logic Programming (ILP) (Muggleton and de Raedt, 1994) capable of learning logic programs with recursive clauses and invented predicates from examples, background knowledge and a declarative bias,
In Meta-interpretive learning (MIL) the metarules, second-order datalog clauses acting as inductive bias, are manually defined by the user. In this work we show that second-order metarules for MIL can be learned by MIL. We define a generality ordering of metarules by $$\theta$$ θ -subsumption and show that user-defined sort metarules are derivable by specialisation of the most-general matrix metarules in a language class; and that these matrix metarules are in turn derivable by specialisation of third-order punch metarules with variables quantified over the set of atoms and for which only an upper bound on their number of literals need be user-defined. We show that the cardinality of a metarule language is polynomial in the number of literals in punch metarules. We re-frame MIL as metarule specialisation by resolution. We modify the MIL metarule specialisation operator to return new metarules rather than first-order clauses and prove the correctness of the new operator. We implement the new operator as TOIL, a sub-system of the MIL system Louise. Our experiments show that as user-defined sort metarules are progressively replaced by sort metarules learned by TOIL, Louise’s predictive accuracy and training times are maintained. We conclude that automatically derived metarules can replace user-defined metarules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.