The emergence of SARS-CoV-2 variants of concern (VOC) requires adequate coverage of vaccine protection. We evaluated whether a SARS-CoV-2 spike ferritin nanoparticle vaccine (SpFN), adjuvanted with the Army Liposomal Formulation QS21 (ALFQ), conferred protection against the Alpha (B.1.1.7), and Beta (B.1.351) VOCs in Syrian golden hamsters. SpFN-ALFQ was administered as either single or double-vaccination (0 and 4 week) regimens, using a high (10 μg) or low (0.2 μg) dose. Animals were intranasally challenged at week 11. Binding antibody responses were comparable between high- and low-dose groups. Neutralizing antibody titers were equivalent against WA1, B.1.1.7, and B.1.351 variants following two high dose vaccinations. Dose-dependent SpFN-ALFQ vaccination protected against SARS-CoV-2-induced disease and viral replication following intranasal B.1.1.7 or B.1.351 challenge, as evidenced by reduced weight loss, lung pathology, and lung and nasal turbinate viral burden. These data support the development of SpFN-ALFQ as a broadly protective, next-generation SARS-CoV-2 vaccine.
Ag-specific memory T cell responses elicited by infections or vaccinations are inextricably linked to long-lasting protective immunity. Studies of protective immunity amongst residents of malaria endemic areas indicate that memory responses to Plasmodia antigens are not adequately developed or maintained, as persons who survive episodes of childhood malaria are still vulnerable to either persistent or intermittent malaria infections. In contrast, multiple exposures to radiation-attenuated Plasmodia sporozoites (γ-spz) induce long-lasting protective immunity to experimental sporozoite challenge. We previously demonstrated that sterile protection induced by Plasmodium berghei (Pb) γ-spz is MHC-class I-dependent and CD8 T cells are the key effectors. IFN-γ+CD8 T cells that arise in Pb γ-spz immunized B6 mice are found predominantly in the liver and are sensitive to levels of liver-stage Ag depot and they express CD44hiCD62Llo markers indicative of effector/effector memory (E/EM) phenotype. The developmentally related central memory (CM) CD8 T cells express elevated levels of CD122 (IL-15Rβ), which suggests that CD8 TCM cells depend upon IL-15 for maintenance. Using IL-15 deficient mice, we demonstrate here that although protective immunity is inducible in these mice, protection is short-lived, mainly owing to the inability of CD8 TCM cells to survive in the IL-15 deficient milieu. We present a hypothesis consistent with a model whereby intrahepatic CD8 TCM cells, being maintained by IL-15-mediated survival and basal proliferation, are conscripted into CD8 TE/EM cell pool during subsequent infections.
Immunologic memory induced by pathogenic agents or vaccinations is inextricably linked to long-lasting protection. Adequately maintained memory T and B cell pools assure a fast, effective, and specific response against re-infections. Studies of immune responses amongst residents of malaria endemic areas suggest that memory responses to Plasmodia antigens appear to be neither adequately developed nor maintained, because persons who survive episodes of childhood malaria remain vulnerable to persistent or intermittent malaria infections. By contrast, multiple exposures of humans and laboratory rodents to radiation-attenuated Plasmodia sporozoites (γ-spz) induces sterile and long-lasting protection against experimental sporozoite challenge. Protection is associated with MHC-class I-dependent CD8 T cells, the key effectors against pre-erythrocytic stage infection. We have adopted the P. berghei γ-spz mouse model to study memory CD8 T cells that are specific for antigens expressed by Pb liver-stage (LS) parasites and are found predominantly in the liver. On the basis of phenotypic and functional characteristics, we have demonstrated that liver CD8 T cells form two subsets: CD44hiCD62LloKLRG-1+CD107+CD127−CD122loCD8 T effector/effector memory (TE/EM) cells that are the dominant IFN-γ producers and CD44hiCD62LhiKLRG-1−CD107−CD127+CD122hiCD8 T central memory (TCM) cells. In this review, we discuss our observations concerning the role of CD8 TE/EM and CD8 TCM cells in the maintenance of protracted protective immunity against experimental malaria infection. Finally, we present a hypothesis consistent with a model whereby intrahepatic CD8 TCM cells, that are maintained in part by LS-Ag depot and by IL-15-mediated survival and homeostatic proliferation, form a reservoir of cells ready for conscription to CD8 TE/EM cells needed to prevent re-infections.
Immunologic memory is one of the cardinal features of antigen-specific immune responses, and the persistence of memory cells contributes to prophylactic immunizations against infectious agents. Adequately maintained memory T and B cell pools assure a fast, effective and specific response against re-infections. However, many aspects of immunologic memory are still poorly understood, particularly immunologic memory inducible by parasites, for example, Plasmodium spp., the causative agents of malaria. For example, memory responses to Plasmodium antigens amongst residents of malaria endemic areas appear to be either inadequately developed or maintained, because persons who survive episodes of childhood malaria remain vulnerable to intermittent malaria infections. By contrast, multiple exposures of humans and laboratory rodents to radiation-attenuated Plasmodium sporozoites (γ-spz) induce sterile and long-lasting protection against experimental sporozoite challenge. Multifactorial immune mechanisms maintain this protracted and sterile protection. While the presence of memory CD4 T cell subsets has been associated with lasting protection in humans exposed to multiple bites from Anopheles mosquitoes infected with attenuated Plasmodium falciparum, memory CD8 T cells maintain protection induced with Plasmodium yoelii and Plasmodium berghei γ-spz in murine models. In this review, we discuss our observations that show memory CD8 T cells specific for antigens expressed by P. berghei liver stage parasites as an indispensable component for the maintenance of protracted protective immunity against experimental malaria infection; moreover, the provision of an Ag-depot assures a quick recall of memory T cells as IFN-γ-producing effector CD8 T cells and IL-4- producing CD4 T cells that collaborate with B cells for an effective antibody response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.