new family of companion forms associated with a regular polynomial matrix T (s) has been presented, using products of permutations of n elementary matrices, generalizing similar results presented in Fiedler (Linear Algebra Its Appl 371: [325][326][327][328][329][330][331] 2003) where the scalar case was considered. In this paper, extending this "permuted factors" approach, we present a broader family of companion-like linearizations, using products of up to n(n − 1)/2 elementary matrices, where n is the degree of the polynomial matrix. Under given conditions, the proposed linearizations can be shown to consist of block entries where the coefficients of the polynomial matrix appear intact. Additionally, we provide a criterion for those linearizations to be block symmetric. We also illustrate several new block symmetric linearizations of the original polynomial matrix T (s), where in some of them the constraint of nonsingularity of the constant term and the coefficient of maximum degree are not a prerequisite.
In an earlier paper by the present authors, a new family of companion forms associated with a regular polynomial matrix was presented, generalizing similar results by M. Fiedler who considered the scalar case. This family of companion forms preserves both the finite and infinite elementary divisor structure of the original polynomial matrix, thus all its members can be seen as linearizations of the corresponding polynomial matrix. In this note, its applications on polynomial matrices with symmetries, which appear in a number of engineering fields, are examined.
We propose a new algorithm for the computation of a minimal polynomial basis of the left kernel of a given polynomial matrix F (s): The proposed method exploits the structure of the left null space of generalized Wolovich or Sylvester resultants to compute row polynomial vectors that form a minimal polynomial basis of left kernel of the given polynomial matrix. The entire procedure can be implemented using only orthogonal transformations of constant matrices and results to a minimal basis with orthonormal coe¢ cients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.