Epigenetic modifications such as histone methylation play an important role in human cancer metastasis. Enhancer of zeste homolog 2 (EZH2), which encodes the histone methyltransferase component of the polycomb repressive complex 2 (PRC2), is overexpressed widely in breast and prostate cancers and epigenetically silences tumor suppressor genes. Expression levels of the novel tumor and metastasis suppressor Raf-1 kinase inhibitor protein (RKIP) have been shown to correlate negatively with those of EZH2 in breast and prostate cell lines as well as in clinical cancer tissues. Here, we show that the RKIP/EZH2 ratio significantly decreases with the severity of disease and is negatively associated with relapse-free survival in breast cancer. Using a combination of loss-and gain-of-function approaches, we found that EZH2 negatively regulated RKIP transcription through repressionassociated histone modifications. Direct recruitment of EZH2 and suppressor of zeste 12 (Suz12) to the proximal E-boxes of the RKIP promoter was accompanied by H3-K27-me3 and H3-K9-me3 modifications. The repressing activity of EZH2 on RKIP expression was dependent on histone deacetylase promoter recruitment and was negatively regulated upstream by miR-101. Together, our findings indicate that EZH2 accelerates cancer cell invasion, in part, via RKIP inhibition. These data also implicate EZH2 in the regulation of RKIP transcription, suggesting a potential mechanism by which EZH2 promotes tumor progression and metastasis.
The proteasome has emerged as an important clinically relevant target for the treatment of hematologic malignancies. Since the Food and Drug Administration approved the first-in-class proteasome inhibitor bortezomib (Velcade®) for the treatment of relapsed/refractory multiple myeloma (MM) and mantle cell lymphoma, it has become clear that new inhibitors are needed that have a better therapeutic ratio, can overcome inherent and acquired bortezomib resistance and exhibit broader anti-cancer activities. Marizomib (NPI-0052; salinosporamide A) is a structurally and pharmacologically unique β-lactone-γ-lactam proteasome inhibitor that may fulfill these unmet needs. The potent and sustained inhibition of all three proteolytic activities of the proteasome by marizomib has inspired extensive preclinical evaluation in a variety of hematologic and solid tumor models, where it is efficacious as a single agent and in combination with biologics, che-motherapeutics and targeted therapeutic agents. Specifically, marizomib has been evaluated in models for multiple myeloma, mantle cell lymphoma, Waldenstrom’s macroglobulinemia, chronic and acute lymphocytic leukemia, as well as glioma, colorectal and pancreatic cancer models, and has exhibited synergistic activities in tumor models in combination with bortezomib, the immunomodulatory agent lenalidomide (Revlimid®), and various histone deacetylase inhibitors. These and other studies provided the framework for ongoing clinical trials in patients with MM, lymphomas, leukemias and solid tumors, including those who have failed bortezomib treatment, as well as in patients with diagnoses where other proteasome inhibitors have not demonstrated significant efficacy. This review captures the remarkable translational studies and contributions from many collaborators that have advanced marizomib from seabed to bench to bedside.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.