Background Stress is defined as a state of threatened or perceived as threatened homeostasis. A broad spectrum of extrinsic or intrinsic, real or perceived stressful stimuli, called 'stressors', activates a highly conserved system, the 'stress system', which adjusts homeostasis through central and peripheral neuroendocrine responses. Inadequate, excessive or prolonged adaptive responses to stress may underlie the pathogenesis of several disease states prevalent in modern societies. The development and severity of these conditions primarily depend on the genetic vulnerability of the individual, the exposure to adverse environmental factors and the timing of the stressful event(s), given that prenatal life, infancy, childhood and adolescence are critical periods characterized by increased vulnerability to stressors.
ObjectivesThyroid hormones play an important role in the maintenance of pregnancy. Their derivates, endogenous amines, act via binding to the trace amine-associated receptor (TAAR1). The aim of our study was to analyse the regulation of TAAR1, serine/threonine kinase (pGSK3β) and ornithine decarboxylase (ODC) in placentas of healthy pregnancies, spontaneous (SM) and recurrent miscarriages (RM) and to investigate the influence of thyroid hormone derivates on TAAR1 expression in trophoblast model cells in vitro.MethodsPatients with SM (n = 15) and RM (n = 15) were compared with patients with healthy pregnancies (n = 15) (pregnancy weeks 7–13 each). Immunohistochemistry was applied to analyse placental TAAR1, pGSK3β and ODC expression. Protein expression of the receptors after stimulation with T3, T1AM and RO5203548 in BeWo trophoblast model cells was determined via Western blot. Double-immunofluorescence was used to determine placental expression of TAAR1 and ODC.ResultsLevels of TAAR1, pGSK3β and ODC were higher in placentas of RM in comparison to healthy controls. Stimulation of BeWo cells with T3, T1AM and RO5203548 significantly increased TAAR1 expression. ODC expression in BeWo cells was upregulated through T3. Via double-immunofluorescence, TAAR1 and ODC-positive EVT could be detected.ConclusionsUpregulation of placental TAAR1 may indicate an increased decarboxylation of thyroid hormones in miscarriages. Patients with RM may have a lack of T3 through an enhanced transformation of T3 into T1AM induced by the ODC. Future investigations could be carried out to analyse what role a prophylactic T3 substitution plays for patients.
Objectivesl-dopa decarboxylase (DDC) is responsible for the synthesis of dopamine. Dopamine, which binds to the D2-dopamine receptor (D2R), plays an important role in the maintenance of pregnancy. Aim of our study was the analysis of DDC and D2R expression in placentas of spontaneous miscarriages (SMs) and recurrent miscarriages (RMs) in comparison to healthy controls.MethodsPatients with SM (n = 15) and RM (n = 15) were compared with patients from healthy pregnancies (n = 15) (pregnancy weeks 7–13 each). Placental tissue has been collected from SMs and RMs from the first trimester (Department of Gynaecology and Obstetrics, LMU Munich) and from abruptions (private practice, Munich). Placental cell lines, BeWo- and JEG-3 cells, were stimulated with the trace amines T0AM and T1AM in vitro.ResultsLevels of DDC and D2R in trophoblasts and the decidua were lower in RMs in comparison to healthy controls. Stimulation of BeWo cells with T1AM significantly reduced DDC mRNA and protein levels. Via double-immunofluorescence, a DDC-positive cell type beneath decidual stromal cells and foetal EVT in the decidua could be detected.ConclusionsDownregulation of DDC and D2R in trophoblasts of RMs reflects a reduced signal cascade of catecholamines on the foetal side.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.