Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeast Saccharomyces cerevisiae. DNA sequences dubbed 'molecular bar codes' uniquely identify each strain, enabling their growth to be analysed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays. We show that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment. Less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal growth in four of the tested conditions. Our results validate the yeast gene-deletion collection as a valuable resource for functional genomics.
The functions of many open reading frames (ORFs) identified in genome-sequencing projects are unknown. New, whole-genome approaches are required to systematically determine their function. A total of 6925 Saccharomyces cerevisiae strains were constructed, by a high-throughput strategy, each with a precise deletion of one of 2026 ORFs (more than one-third of the ORFs in the genome). Of the deleted ORFs, 17 percent were essential for viability in rich medium. The phenotypes of more than 500 deletion strains were assayed in parallel. Of the deletion strains, 40 percent showed quantitative growth defects in either rich or minimal medium.
Splicing regulates gene expression and contributes to proteomic diversity in higher eukaryotes. However, in yeast only 283 of the 6000 genes contain introns and their impact on cell function is not clear. To assess the contribution of introns to cell function, we initiated large-scale intron deletions in yeast with the ultimate goal of creating an intron-free model eukaryote. We show that about one-third of yeast introns are not essential for growth. Only three intron deletions caused severe growth defects, but normal growth was restored in all cases by expressing the intronless mRNA from a heterologous promoter. Twenty percent of the intron deletions caused minor phenotypes under different growth conditions. Strikingly, the combined deletion of all introns from the 15 cytoskeleton-related genes did not affect growth or strain fitness. Together, our results show that although the presence of introns may optimize gene expression and provide benefit under stress, a majority of introns could be removed with minor consequences on growth under laboratory conditions, supporting the view that many introns could be phased out of Saccharomyces cerevisiae without blocking cell growth.
The genome of Saccharomyces cerevisiae contains five genes that encode type II transmembrane proteins with significant amino acid similarity to the alpha-1,3-mannosyltransferase Mnn1p. The roles of the three genes most closely related to MNN1 were examined in mutants carrying single and multiple combinations of the disrupted genes. Paper chromatographic analysis of [2-3H]mannose-labeled O-linked oligosaccharides released by beta-elimination showed that the MNT2 (YGL257c) and MNT3 (YIL014w) genes in combination with MNN1 have overlapping roles in the addition of the fourth and fifth alpha-1,3-linked mannose residues to form Man4 and Man5 oligosaccharides whereas MNT4 (YNR059w) does not appear to be required for O-glycan synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.