, IBM announced the start of a five-year effort to build a massively parallel computer, to be applied to the study of biomolecular phenomena such as protein folding. The project has two main goals: to advance our understanding of the mechanisms behind protein folding via large-scale simulation, and to explore novel ideas in massively parallel machine architecture and software. This project should enable biomolecular simulations that are orders of magnitude larger than current technology permits. Major areas of investigation include: how to most effectively utilize this novel platform to meet our scientific goals, how to make such massively parallel machines more usable, and how to achieve performance targets, with reasonable cost, through novel machine architectures. This paper provides an overview of the Blue Gene project at IBM Research. It includes some of the plans that have been made, the intended goals, and the anticipated challenges regarding the scientific work, the software application, and the hardware design.
The Singapore Regional Waters (SRW) is one of the more complex tidal regions in the world. This complexity is caused by various factors including the interaction of the Indian and Pacific oceans with their mainly semi-diurnal and diurnal tide, respectively, complicated coastline geometry, small islands and sharply varying bottom topography. Tidal data analysis is hampered by the lack of reliable coastal stations with long-term water level records while numerical tidal modelling studies suffer from lack of accurate highresolution bathymetry data and uncertainty in the prescription of the tidal open boundary forcing. The present study combines numerical modelling with available along-track satellite altimetry data and a limited set of reliable coastal stations. It proposes a structured approach to study the sensitivity of tidal propagation and interactions to parameters like the prescription of tidal forcing at the open ocean boundaries, local depth information and seabed roughness. To guide and facilitate this analysis, the open-source software environment OpenDA for sensitivity analysis and simultaneous parameter optimisation is used. In a user-controlled way, the vector difference error in tidal representation could so effectively be reduced by~50%. The results confirm the benefit of using OpenDA in guiding the systematic exploration of the modelled tide and reducing the parameter uncertainties in different parts of the SRW region. OpenDA is also shown to reduce the repetitive nature of simultaneous parameter variation. Finally, the behaviour of the tide in the region and its sensitivities to changes in tidal boundary forcing and to local depth and friction variation in the narrow regions of the Malacca Strait is now much better understood. With most of the systematic errors reduced in the numerical model as a result of the sensitivity analysis, it is expected that the model can be applied to study tide-surge interaction and is much better suited for later application in combination with data assimilation techniques such as Kalman filtering for which systematic model errors should be minimal.
Understanding lake dynamics is crucial to provide scientifically credible information for ecosystem management. In this context, three-dimensional hydrodynamic models are a key information source to assess critical but often subtle changes in lake dynamics occurring at all spatio-temporal scales. However, those models require timeconsuming calibrations, often carried out by trial-and-error. Through a new coupling of open source software, we present here a flexible and computationally inexpensive automated calibration framework. The method, tailored to the calibration data available to the user, aims at (i) reducing the time spent on calibration, and (ii) making three-dimensional lake modelling accessible to a broader range of users. It is demonstrated for two different lakes (Lake Geneva and Greifensee) with an extensive multi-variable observational dataset. Models mean absolute errors are reduced by up to ~50% over the baseline. Guidelines on heat and momentum transfer parameters are given with their dependence on the observational setup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.