Radio frequency (RF)-based indoor positioning systems (IPSs) use wireless technologies (including Wi-Fi, Zigbee, Bluetooth, and ultra-wide band (UWB)) to estimate the location of persons in areas where no Global Positioning System (GPS) reception is available, for example in indoor stadiums or sports halls. Of the above-mentioned forms of radio frequency (RF) technology, UWB is considered one of the most accurate approaches because it can provide positioning estimates with centimeter-level accuracy. However, it is not yet known whether UWB can also offer such accurate position estimates during strenuous dynamic activities in which moves are characterized by fast changes in direction and velocity. To answer this question, this paper investigates the capabilities of UWB indoor localization systems for tracking athletes during their complex (and most of the time unpredictable) movements. To this end, we analyze the impact of on-body tag placement locations and human movement patterns on localization accuracy and communication reliability. Moreover, two localization algorithms (particle filter and Kalman filter) with different optimizations (bias removal, non-line-of-sight (NLoS) detection, and path determination) are implemented. It is shown that although the optimal choice of optimization depends on the type of movement patterns, some of the improvements can reduce the localization error by up to 31%. Overall, depending on the selected optimization and on-body tag placement, our algorithms show good results in terms of positioning accuracy, with average errors in position estimates of 20 cm. This makes UWB a suitable approach for tracking dynamic athletic activities.
An accurate step length estimation can provide valuable information to different applications such as indoor positioning systems or it can be helpful when analyzing the gait of a user, which can then be used to detect various gait impairments that lead to a reduced step length (caused by e.g., Parkinson’s disease or multiple sclerosis). In this paper, we focus on the estimation of the step length using machine learning techniques that could be used in an indoor positioning system. Previous step length algorithms tried to model the length of a step based on measurements from the accelerometer and some tuneable (user-specific) parameters. Machine-learning-based step length estimation algorithms eliminate these parameters to be tuned. Instead, to adapt these algorithms to different users, it suffices to provide examples of the length of multiple steps for different persons to the machine learning algorithm, so that in the training phase the algorithm can learn to predict the step length for different users. Until now, these machine learning algorithms were trained with features that were chosen intuitively. In this paper, we consider a systematic feature selection algorithm to be able to determine the features from a large collection of features, resulting in the best performance. This resulted in a step length estimator with a mean absolute error of 3.48 cm for a known test person and 4.19 cm for an unknown test person, while current state-of-the-art machine-learning-based step length estimators resulted in a mean absolute error of 4.94 cm and 6.27 cm for respectively a known and unknown test person.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.