Introduction Speed is an important prerequisite in soccer. Therefore, a large number of tests have been developed aiming to investigate several speed skills relevant to soccer. This systematic review aimed to examine the validity and reliability of speed tests used in adult soccer players. Methods A systematic search was performed according to the PRISMA guidelines. Studies were included if they investigated speed tests in adult soccer players and reported validity (construct and criterion) or reliability (intraday and interday) data. The tests were categorized into linear-sprint, repeated-sprint, change-of-direction sprint, agility, and tests incorporating combinations of these skills. Results In total, 90 studies covering 167 tests were included. Linear-sprint (n = 67) and change-of-direction sprint (n = 60) were studied most often, followed by combinations of the aforementioned (n = 21) and repeated-sprint tests (n = 15). Agility tests were examined fewest (n = 4). Mainly based on construct validity studies, acceptable validity was reported for the majority of the tests in all categories, except for agility tests, where no validity study was identified. Regarding intraday and interday reliability, ICCs>0.75 and CVs<3.0% were evident for most of the tests in all categories. These results applied for total and average times. In contrast, measures representing fatigue such as percent decrement scores indicated inconsistent validity findings. Regarding reliability, ICCs were 0.11–0.49 and CVs were 16.8–51.0%. Conclusion Except for agility tests, several tests for all categories with acceptable levels of validity and high levels of reliability for adult soccer players are available. Caution should be given when interpreting fatigue measures, e.g., percent decrement scores. Given the lack of accepted gold-standard tests for each category, researchers and practitioners may base their test selection on the broad database provided in this systematic review. Future research should pay attention to the criterion validity examining the relationship between test results and match parameters as well as to the development and evaluation of soccer-specific agility tests.
The purpose of this study was to examine to what extent the physical match performance of professional soccer players is both position and player specific. First, official match data from the 2019/20 German Bundesliga season was used to search for players that met the inclusion criteria of playing a minimum of four entire matches in at least two different playing positions. Overall, 25 players met the criteria prior to the COVID-19 induced break, playing a minimum of eight matches. Second, the physical match performance of these players was analyzed separately for each position they played. The following four parameters were captured: total distance, high-intensity distance, sprinting distance, and accelerations. Third, the 25 players’ physical match performance data was then compared to normative data for each position they played to understand whether players adapted their physical performance (position dependent), or maintained their performance regardless of which position they were assigned to (position independent). When switching the position, the change in physical match performance of the respective players could be explained by 44–58% through the normative positional data. Moreover, there existed large individual differences in the way players adapted or maintained their performance when acting in different positions. Coaches and practitioners should be aware that some professional soccer players will likely incur differences in the composition of physical match performance when switching positions and therefore should pay special consideration for such differences in the training and recovery process of these players.
The purpose of this study was to investigate whether tactical formation affects the physical and technical match performance of professional soccer players in the first German Bundesliga. From official match data of the Bundesliga season 2018/19, physical (total distance, high-intensity distance, sprinting distance, accelerations, maximum velocity) and technical performance (short/middle/long passes, dribblings, ball-possessions) of players were analyzed. Players were categorized into five playing positions (center back, full back, central midfielder, wide midfielder, forward) and teams into eight different tactical formations (4-4-2, 4-4-2 diamond, 4-2-2-2, 4-3-3, 4-5-1, 4-2-3-1, 3-4-3, 3-5-2). Results revealed that the degree to which tactical formation affects match performance is position dependent. In terms of physical performance, center backs and full backs showed highest sprinting distances when playing in a formation with only three defenders in the back row (3-4-3, 3-5-2) compared to all other formations (ES range: 0.13≤ES≤1.27). Regarding technical performance, all positions except forwards displayed fewer short passes, middle passes and ball-possessions in the formations 4-3-3 and 4-2-3-1 compared to all other formations (0.02≤ES≤1.19). In conclusion, physical and technical performance of center backs, full backs and wide midfielders differed markedly between the tactical formations. Conversely, the physical and technical performance of central midfielders and forwards only showed small differences between the different tactical formations. These findings can help coaches scheduling their practice. For example, if a coach wants to change the playing formation, he can anticipate the physical and technical match performance changes depending on the respective playing position.
Introduction: Maximal aerobic speed (MAS), usually measured by cardiopulmonary exercise testing (CPET) on a treadmill, is gaining popularity in soccer to determine aerobic performance. Several field tests are used to estimate MAS, although, gold standard methods are still not clarified. Therefore, this work aims 1) to compare two different CPET based methods to assess MAS and 2) to investigate the convergent validity of two common field tests to estimate MAS in soccer.Methods: Thirteen trained male soccer players completed an CPET on a treadmill to determine two VO2-kinetic based definitions of MAS (MASPlateau = speed at onset of VO2-plateau = gold standard; MAS30s = first speed of 30-s-interval of VO2max), the Université de Montreal Track Test (UMTT; VUMTT = speed of the last stage), and a 1500-m-time trial (1500-m-TT; V1500m = average speed). MASPlateau, MAS30s, VUMTT, and V1500m were compared using ANOVA. Additionally, limits of agreement analysis (LoA), Pearson’s r, and ICC were calculated between tests.Results: MAS30s, VUMTT, and V1500m significantly overestimated MASPlateau by 0.99 km/h (ES = 1.61; p < 0.01), 1.61 km/h (ES = 2.03; p < 0.01) and 1.68 km/h (ES = 1.77; p < 0.01), respectively, with large LoA (-0.21 ≤ LoA≤3.55), however with large-to-very large correlations (0.65 ≤ r ≤ 0.87; p ≤ 0.02; 0.51 ≤ ICC≤ 0.85; p ≤ 0.03).Discussion: The overestimation and large LoA of MASPlateau by all estimates indicate that 1) a uniform definition of MAS is needed and 2) the UMTT and a 1500-m-TT seem questionable for estimating MAS for trained soccer players on an individual basis, while regression equations might be suitable on a team level. The results of the present work contribute to the clarification of acquisition of MAS in soccer.
Altmann, S, Spielmann, M, Engel, FA, Neumann, R, Ringhof, S, Oriwol, D, and Haertel, S. Validity of single-beam timing lights at different heights. J Strength Cond Res 31(7): 1994-1999, 2017-The purpose of this study was to quantify the effect of different timing light heights on sprint time and the validity of measurement. Two single-beam timing gate systems were used to measure 30-m sprint time (splits at 5 and 10 m) in 15 healthy and physically active male subjects. System 1 was set up at a height of 0.64 m and system 2 at 0.25 m (initial timing light) and 1.00 m (each following timing light), respectively. Participants performed 3 valid trials. The recordings of a high-speed video camera were used as a reference. Sprint times of system 1 and system 2 differed significantly between each other and from the reference system at all distances (p < 0.001). Intraclass correlation coefficients and Pearson's r values between both timing light systems and the reference system were low to moderate at 5 and 10 m and moderate to high at 30 m. Bland and Altman analysis revealed that the agreement intervals were considerably higher for the comparison between system 1 and the reference system than for system 2 and the reference system. A valid measurement of splits at 5 and 10 m via the systems used in this study is questionable, whereas 30-m times have an acceptable validity, especially when using system 2. This study confirms the influence of methodological approaches on sprint times. Coaches and researchers should consider that results gained by single-beam timing lights at different heights are not comparable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.