Little is known about the migration of mesenchymal stem cells (MSCs). Some therapeutic approaches had demonstrated that MSCs were able to regenerate injured tissues when applied from different sites of application. This implies that MSCs are not only able to migrate but also that the direction of migration is controlled. Factors that are involved in the control of the migration of MSCs are widely unknown. The migratory ability of isolated MSCs was tested in different conditions. The migratory capability was examined using Boyden chamber assay in the presence or absence of basic fibroblast growth factor (bFGF), erythropoietin, interleukin-6, stromal cell-derived factor-, and vascular endothelial growth factor. bFGF in particular was able to increase the migratory activity of MSCs through activation of the Akt/protein kinase B (PKB) pathway. The results were supported by analyzing the orientation of the cytoskeleton. In the presence of a bFGF gradient, the actin filaments developed a parallelized pattern that was strongly related to the gradient. Surprisingly, the influence of bFGF was not only an attraction but also routing of MSCs. The bFGF gradient experiment showed that low concentrations of bFGF lead to an attraction of the cells, whereas higher concentrations resulted in repulsion. This ambivalent effect of bFGF provides the possibility to a purposeful routing of MSCs.
Although ES cells may provide treatment for degenerative disease in the future, their unlimited self-renewal and high differentiation potential poses the risk of tumor induction after engraftment. Thus, more care must be taken before using ES cell transplantation as a therapeutic option for patients with degenerative disease.
Our data indicate that bone marrow-derived stromal cells of horses can be characterized as MSCs. Equine MSCs have a high transduction rate and migratory potential and adapt to scaffold material in culture. As an autologous cell population, equine MSCs can be regarded as a promising cell population for tissue engineering in lesions of the musculoskeletal system in horses.
Iron oxide particles are especially suited for cell tracking experiments due to their extraordinarily molar relaxivity as compared with other paramagnetic nuclei. We have compared different iron oxide particles (Sinerem, Endorem and magnetic microspheres) for their suitability to label embryonic stem cells (D3 cell line). In addition to detectability thresholds, particular attention has been paid to the evaluation of long-term stability of the labelling procedure (up to 4 weeks) as well as to toxic and other adverse effects on cell viability. Comparative studies were performed using neural progenitor cells (C17.2) and dendritic cells. The present study indicates strong dependence of the label efficiency and stability on the iron oxide particles and cell lines in use.
Axonal dystrophy is the hallmark of axon pathology in many neurodegenerative disorders of the CNS, including Alzheimer's disease, Parkinson's disease and stroke. Axons can also form larger swellings, or spheroids, as in multiple sclerosis and traumatic brain injury. Some spheroids are terminal endbulbs of axon stumps, but swellings may also occur on unbroken axons and their role in axon loss remains uncertain. Similarly, it is not known whether spheroids and axonal dystrophy in so many different CNS disorders arise by a common mechanism. These surprising gaps in current knowledge result largely from the lack of experimental methods to manipulate axon pathology. The slow Wallerian degeneration gene, Wld(S), delays Wallerian degeneration after injury, and also delays 'dying-back' in peripheral nervous system disorders, revealing a mechanistic link between two forms of axon degeneration traditionally considered distinct. We now report that Wld(S) also inhibits axonal spheroid pathology in gracile axonal dystrophy (gad) mice. Both gracile nucleus (P < 0.001) and cervical gracile fascicle (P = 0.001) contained significantly fewer spheroids in gad/Wld(S) mice, and secondary signs of axon pathology such as myelin loss were also reduced. Motor nerve terminals at neuromuscular junctions continued to degenerate in gad/Wld(S) mice, consistent with previous observations that Wld(S) has a weaker effect on synapses than on axons, and probably contributing to the fact that Wld(S) did not alleviate gad symptoms. Wld(S) acts downstream of the initial pathogenic events to block gad pathology, suggesting that its effect on axonal swelling need not be specific to this disease. We conclude that axon degeneration mechanisms are more closely related than previously thought and that a link exists in gad between spheroid pathology and Wallerian degeneration that could hold for other disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.