To alleviate the problems in the receptor-based design of metalloprotein ligands due to inadequacies in the force-field description of coordination bonds, a four-tier approach was devised. Representative ligand-metalloprotein interaction energies are obtained by subsequent application of (1) docking with metal-binding-guided selection of modes; (2) optimization of the ligand-metalloprotein complex geometry by combined quantum mechanics and molecular mechanics (QM/MM) methods; (3) conformational sampling of the complex with constrained metal bonds by force-field based molecular dynamics (MD); and (4) a single point QM/MM energy calculation for the time-averaged structures. The QM/MM interaction energies are, in a linear combination with the desolvation-characterizing changes in the solvent-accessible surface areas, correlated with experimental data. The approach was applied to structural correlation of published binding free energies of a diverse set of 28 hydroxamate inhibitors to zinc-dependent matrix metalloproteinase 9 (MMP-9). Inclusion of step 3 and step 4 significantly improved both correlation and prediction. The two descriptors explained 90% of variance in inhibition constants of all 28 inhibitors, ranging from 0.08 to 349 nM, with the average unassigned error of 0.318 log units. The structural and energetic information obtained from the timeaveraged MD simulation results helped understand the differences in binding modes of related compounds.
The monocytic leukemic zinc-finger (MOZ) histone acetyltransferase (HAT) acetylates free histones H3, H4, H2A, and H2B in vitro and is associated with up-regulation of gene transcription. The MOZ HAT functions as a quaternary complex with the bromodomain-PHD finger protein 1 (BRPF1), inhibitor of growth 5 (ING5), and hEaf6 subunits. BRPF1 links the MOZ catalytic subunit to the ING5 and hEaf6 subunits, thereby promoting MOZ HAT activity. Human BRPF1 contains multiple effector domains with known roles in gene transcription, and chromatin binding and remodeling. However, the biological function of the BRPF1 bromodomain remains unknown. Our findings reveal novel interactions of the BRPF1 bromodomain with multiple acetyllysine residues on the N-terminus of histones, and show it preferentially selects for H2AK5ac, H4K12ac and H3K14ac. We used chemical shift perturbation data from NMR titration experiments to map the BRPF1 bromodomain ligand binding pocket and identified key residues responsible for coordination of the post-translationally modified histones. Extensive molecular dynamics simulations were used to generate structural models of bromodomain-histone ligand complexes, to analyze H-bonding and other interactions, and to calculate the binding free energies. Our results outline the molecular mechanism driving binding specificity of the BRPF1 bromodomain for discrete acetyllysine residues on the N-terminal histone tails. Together these data provide insights on how histone recognition by the bromodomain directs the biological function of BRPF1, ultimately targeting the MOZ HAT complex to chromatin substrates.
Tissue components hydrolyzing matrix metalloproteinases (MMPs) exhibit a high sequence similarity (56 -64% in catalytic domains) and yet a significant degree of functional specificity. The hexapeptide-binding sites of 24 known human MMPs were compared in terms of their force field interaction energies with five probes that are most frequently encountered in substrates and inhibitors. The probes moved along a grid enclosing partially flexible binding sites in rigid catalytic domains that were represented by published experimental structures and comparative models and new comparative models for nine most recently characterized MMPs. For individual MMPs, representative interaction energies were obtained as averages for all suitable experimental structures. Correlations of the representative energies for all MMP pairs were succinctly catalogued for individual probes, subsites, and correlation levels. Among the probes (neutral sp 3 carbon and sp 3 oxygen, positive sp 3 nitrogen and hydrogen, and negative carbonyl oxygen), the last probe is least distinctive. Similarities of subsites are decreasing as S1 > S2 > S3 > S1 ϳ S3 > S2 . Most interesting, occupancies of subsites in published structures of MMP-inhibitor complexes follow an almost parallel trend, alluding to overall low selectivity of known MMP inhibitors. Flexible subsite S1 that appears as the specificity pocket in rigid x-ray structures is actually very similar among individual MMPs. Several correlations indicated that MMPs 3, 8, and 12 have similar binding sites. Modeling results are corroborated with published experimental data on MMP inhibition and substrate specificities. The results provide numerous clues for development of specific inhibitors and substrates, as well as for selection of MMPs for testing that provides maximum information without redundant experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.