When knowledge is developed fast, as it is the case so often nowadays, one of the main difficulties in initiating new research in any field is to identify the domain's specific state-of-the-art and trends. In this context, to evaluate the potential of a research niche by assisting the literature review process and to add a new and modern large-scale and automated dimension to it, the paper proposes a methodology that uses "Latent Semantic Analysis" (LSA) for identifying trends, focused within the knowledge space created at the intersection of three sustainability-related methodologies/concepts: "virtual Quality Management" (vQM), "Industry 4.0", and "Product Life-Cycle" (PLC). The LSA was applied to a significant number of scientific papers published around these concepts to generate ontology charts that describe the knowledge structure of each by the frequency, position, and causal relation of associated notions. These notions are combined for defining the common high-density knowledge zone from where new technological solutions are expected to emerge throughout the PLC. The authors propose the concept of the knowledge space, which is characterized through specific descriptors with their own evaluation scales, obtained by processing the emerging information as identified by a combination of classic and innovative techniques. The results are validated through an investigation that surveys a relevant number of general managers, specialists, and consultants in the field of quality in the automotive sector from Romania. This practical demonstration follows each step of the theoretical approach and yields results that prove the capability of the method to contribute to the understanding and elucidation of the scientific area to which it is applied. Once validated, the method could be transferred to fields with similar characteristics. Even if their creators endowed them with a clear meaning at an incipient stage, when they become more popular in an emerging area, these concepts are quickly surrounded by a large amount of new knowledge that is developed with an amazing speed, enriching and enlarging their initial sphere.The "virtual Quality Management" (vQM) concept could be a significant example for the circumstances described previously. It is born through a semantic operation, joining two established and mature concepts: "virtual" and "QM", thus it is representative for an area which is in a period of high dynamic development and of interest for companies preoccupied with sustainability from the perspective of operations management and organizational culture.In this context in which the amount of information relating to new concepts quickly reaches unmanageable levels, regardless of the field, solutions that can analyze extended documentation with the purpose of disambiguating information and capturing the essentials, thus creating knowledge, become the focus of attention and gain in importance. Traditional solutions for that purpose lay in the literature review process, trying to collect, select, filter, and struc...
Integrated management systems (IMSs) can already be considered a proven tool to help companies cope with the challenges associated with staying competitive in the face of dynamic stakeholder requirements. The present paper proposes a new instrument designed to evaluate and communicate the maturity achieved by an integrated management system (IMS) for responding properly to the requirements of its reference standards in a consolidated manner. The approach mainly aims to highlight the level of integration achieved on common requirements of the component standards and to determine the extent to which they work together as a whole. At the same time, it is useful to identify the needs for improvement in the system as a whole or in its sub-systems. The proposed methodology uses the transmutation in the RGB color space (red-green-blue) of the process audits' results achieved under each standard, followed by the analysis of the IMS characteristics, with tools specific to the color space, based on the affinities between the two domains. To sustain the thoroughness of this approach, a case study of an integrated system for an industrial company is presented, analyzing the situation from two different evolution stages of the IMS. The approach is presented as a proof-of-concept, without large scale validation.
The wooden churches from Transylvania, Romania, are a unique and representative cultural heritage asset for rural communities, both in terms of architecture and the style of painting that defines them as monuments of national heritage. These churches are in danger of degradation because rural communities are beginning to abandon them for various motives (e.g., they are too small, are expensive to maintain, or are being replaced by modern churches, built of stone and modern materials). The reason behind their accelerated degradation is that they are covered with shingles that need to be periodically changed and repaired to prevent water from reaching the inner painting layer, a process that is, in many cases, ignored. Imperial gates are the symbol of these churches and separate the nave from the narthex. They are made entirely out of wood and were sculpted and painted manually by skilled craftsmen and still represent the central element of these churches, in terms of art and aesthetics. The digital preservation of these heritage assets is an interdisciplinary undertaking, which begins with the physico-chemical analysis of the pigments in the painting layer, continues with three-dimensional (3D) digitization of the monument and of the objects of interest (such as the imperial gates), and finishes with a digital restoration of these monuments and artefacts. This paper presents a working methodology, successfully applied in digitizing and digitally restoring imperial gates from wooden churches in Transylvania, namely from the wooden church of Voivodeni, Sălaj County, Romania (Transylvania region). X-ray fluorescence and FTIR spectroscopy were used to determine the pigments in the painting layer of these artefacts, and after they were identified, they were synthesized in laboratory conditions. The resulting color was digitized and used for digitally restoring the artefact(s) to its (their) pristine condition. To popularize these cultural heritage assets, the authors make use of virtual reality to mediate the interaction between the general public and heritage objects in their current state of preservation, in a digital environment. Moreover, to showcase how these heritage objects were degraded over time, a digitally restored version of the artefact in pristine condition is presented alongside a version in its current state (as is, digitized, but not yet digitally restored).
This paper presents a case study regarding the methods used in teaching Design
This paper presents a case study both for individual process improvements and also for the improvement of the overall manufacturing flow, within an SME, using specialized simulation software called SigmaFlow Modeler. The improvements are done based on simulation results (accurate knowledge), meaning that by analyzing the process distribution charts, one can dispose measures for solving problems or even preventing potential failures. It has to be noted that by eliminating those bottlenecks the overall performance of the process will increase and the manufacturing flow will also be enhanced. The paper will also present an actual process simulation for the most complex process from the manufacturing cycle, i.e. the milling process, and a short analysis, focusing on possible improvements, will be performed on it. Moreover, further improvements will be done by closely reviewing and identifying every input and output and by introducing them into a cause-and-effect matrix, the importance of each input can be mathematically calculated and action can be taken for the critical ones in order to improve the process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.