Many insects raise their offspring on organic substrates or in the soil where microorganisms are abundant. Microbes may pose a serious threat to offspring development and survival by either decomposing food resources or directly infecting the offspring. Selection to cope with these effects may favor social defenses, for example, through forms of parental care that can limit or eliminate these threats to offspring fitness. In this study, we experimentally tested if maternal egg attendance in the European earwig Forficula auricularia has a function as a social defense against mold infection of eggs by manipulating exposure of eggs to mold spores and the presence of the mother in a fully factorial design. Furthermore, we investigated the potential roles of egg grooming behavior and maternal transfer of chemicals as underlying mechanisms. As predicted, the beneficial effect of egg attendance on hatching success was significantly enhanced when eggs were exposed to the mold. Females significantly increased their egg grooming duration in response to mold exposure of her eggs, and the quantity of chemicals (identified as hydrocarbons) was maintained among attended eggs but decreased substantially among unattended eggs. Maternal transfer of chemicals was confirmed in extractions of glass beads that were mingled into attended or unattended clutches. This study shows that maternal egg attendance in the European earwig has a social defense function protecting offspring against mold infection. The maternal egg grooming behavior seems to be key for this effect, probably through both the mechanical removal of spores and the continued application of chemical substances on the egg surface.
The genetic conflict between parents and their offspring is a cornerstone of kin selection theory and the gene-centred view of evolution, but whether it actually occurs in natural systems remains an open question. Conflict operates only if parenting is driven by genetic trade-offs between offspring performance and the parent's ability to raise additional offspring, and its expression critically depends on the shape of these trade-offs. Here we investigate the occurrence and nature of genetic conflict in an insect with maternal care, the earwig Forficula auricularia. Specifically, we test for a direct response to experimental selection on female future reproduction and correlated responses in current offspring survival, developmental rate and growth. The results demonstrate genetic trade-offs that differ in shape before and after hatching. Our study not only provides direct evidence for parent–offspring conflict but also highlights that conflict is not inevitable and critically depends on the genetic trade-offs shaping parental investment.
When females care for broods of mixed paternity, there is a threat of enhanced rivalry among offspring of different paternal lineages. This competition is against the best evolutionary interest of the female because she is equally related to all of her offspring and enhanced offspring competition would decrease her fitness. It was hypothesized earlier that mothers should therefore conceal the information about paternal origin in the recognition cues used by her offspring, for example by transferring the chemical cues used by her offspring for kin recognition. Here, we used a crossfostering experiment between two closely related and sympatric earwig species, Forficula auricularia and F. decipiens, to demonstrate that F. auricularia nymphs tended by F. decipiens females differ in their cuticular hydrocarbon profiles from F. auricularia nymphs tended by F. auricularia females. This result provides evidence for maternal transfer of cuticular hydrocarbons and shows that offspring adoption across species is possible in earwigs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.