Distributed cutaneous tissue blood volume oscillations contain information on autonomic nervous system (ANS) regulation of cardiorespiratory activity as well as dominating thermoregulation. ANS associated with low-frequency oscillations can be quantified in terms of frequencies, amplitudes, and phase shifts. The relative order between these faculties may be disturbed by conditions colloquially termed ‘stress’. Photoplethysmography imaging, an optical non-invasive diagnostic technique provides information on cutaneous tissue perfusion in the temporal and spatial domains. Using the cold pressure test (CPT) in thirteen healthy volunteers as a well-studied experimental intervention, we present a method for evaluating phase shifts in low- and intermediate frequency bands in forehead cutaneous perfusion mapping. Phase shift changes were analysed in low- and intermediate frequency ranges from 0.05 Hz to 0.18 Hz. We observed that time waveforms increasingly desynchronised in various areas of the scanned area throughout measurements. An increase of IM band phase desynchronization observed throughout measurements was comparable in experimental and control group, suggesting a time effect possibly due to overshooting the optimal relaxation duration. CPT triggered an increase in the number of points phase-shifted to the reference that was specific to the low frequency range for phase-shift thresholds defined as π/4, 3π/8, and π/2 rad, respectively. Phase shifts in forehead blood oscillations may infer changes of vascular tone due to activity of various neural systems. We present an innovative method for the phase shift analysis of cutaneous tissue perfusion that appears promising to assess ANS change processes related to physical or psychological stress. More comprehensive studies are needed to further investigate the reliability and physiological significance of findings.
This article introduces a two-electrode ground-free electrocardiogram (ECG) with minimal hardware complexity, which is ideal for wearable battery-powered devices. The main issue of ground-free measurements is the presence of noise. Therefore, noise suppression methods that can be employed for a two-electrode ECG acquisition system are discussed in detail. Experimental measurements of a living subject and patient simulator are used to investigate and compare the performance of the three proposed methods utilizing the ADS1191 analogue front-end for biopotential measurements. The resulting signals recorded for the simulator indicate that all three methods should be suitable for suppressing power-line noise. The Power Spectral Density (PSD) of the signals measured for a subject exhibits differences across methods; the signal power at 50 Hz is −28, −24.8, and −26 dB for the first, second, and third method, respectively. The digital postprocessing of measured signals acquired a high-quality ECG signal comparable to that of three-electrode sensing. The current consumption measurements demonstrate that all proposed two-electrode ECG solutions are appropriate as a battery-powered device (current consumption < 1.5 mA; sampling rate of 500 SPS). The first method, according to the results, is considered the most effective method in the suppression of power-line noise, current consumption, and hardware complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.