TGF-β receptor (TβR) signaling is important for systemic IgA production; however, its contribution to IgA secretion at mucosal sites remained uncertain. This important question was addressed using mice lacking the TβR in B cells (TβRII-B). Although reduced, IgA-secreting cells and IgA were still present in the systemic and mucosal compartments. The adaptive immune response was investigated after oral or nasal immunization using adjuvants acting on different molecular targets, namely, the cholera toxin B subunit and the macrophage-activating lipopeptide-2. Efficient Ag-specific cellular and humoral responses were triggered both in controls and TβRII-B mice. However, a significant reduction in Ag-specific IgG2b and increased levels of IgG3 were observed in sera from TβRII-B mice. Furthermore, Ag-specific IgA-secreting cells, serum IgA, and secretory IgA were undetectable in TβRII-B mice. These results demonstrate the critical role played by TβR in Ag-driven stimulation of secretory IgA responses in vivo.
A major requirement for HIV/AIDS research is the development of a mucosal vaccine that stimulates humoral and cell-mediated immune responses at systemic and mucosal levels, thereby blocking virus replication at the entry port. Thus, a vaccine prototype based on biologically active HIV-1 Tat protein as antigen and the synthetic lipopeptide, macrophageactivating lipopeptide-2 (MALP-2), as a mucosal adjuvant was developed. Intranasal administration to mice stimulated systemic and mucosal anti-Tat antibody responses, and Tatspecific T cell responses, that were more efficient than those observed after i.p. immunization with Tat plus incomplete Freund's adjuvant. Major linear B cell epitopes mapped within aa 1-20 and 46-60, whereas T cell epitopes were identified within aa 36-50 and 56-70. These epitopes have also been described in vaccinated primates and in HIV-1-infected individuals with better prognosis. Analysis of the anti-Tat IgG isotypes in serum, and the cytokine profile of spleen cells indicated that a dominant Th1 helper response was stimulated by Tat plus MALP-2, as opposed to the Th2 response observed with Tat plus incomplete Freund's adjuvant. Tat-specific IFN-+ -producing cells were significantly increased only in response to Tat plus MALP-2. These data suggest that Malp-2 may represent an optimal mucosal adjuvant for candidate HIV vaccines based on Tat alone or in combination with other HIV antigens.
The macrophage-activating lipopeptide-2 (MALP-2) is an agonist of the TLR heterodimer 2/6, which exhibits potent activity as mucosal adjuvant, promoting strong humoral and cellular responses. Although B cells expressing TLR2/6 are potential targets, very little is known about the effect of MALP-2 on B cells. Studies were performed using total spleen cells or purified B cells from WT mice or animals deficient in TLR2, T cells, B cells, or specific subpopulations of B cells. They demonstrated that MALP-2 promotes a T cell-independent activation and maturation of B cells (mainly follicular but also B-1a and marginal zone B cells) via TLR2. MALP-2 also increased the frequency of IgM- and IgG-secreting cells, but bystander cells were required for IgA secretion. Activated B cells exhibited increased expression of activation markers and ligands that are critical for cross-talk with T cells (CD19, CD25, CD80, CD86, MHC I, MHC II, and CD40). Immunization of mice lacking T cells showed that MALP-2-mediated stimulation of TLR2/6 was unable to circumvent the need of T cell help for efficient Ag-specific B cell activation. Immunization of mice lacking B cells demonstrated that B cells are critical for MALP-2-dependent improvement of T cell responses. The knowledge emerging from this work suggests that MALP-2-mediated activation of B cells through TLR2/6 is critical for adjuvanticity. B cell stimulation by pattern recognition receptors seems to be a basic mechanism that can be exploited to improve the immunogenicity of vaccine formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.