In the present work, our research is focused on an innovative compact all-fiber-optic structure suitable for the development of fully integrated dye lasers. The structure is based on a standard fiber-optic glass ferrule with two parallel openings along its length with diameters of 125 μm. A Fabry-Perot cavity is formed in one of the openings using two fused silica optical fibers with flat end facets. An angle-polished optical fiber with a reflective metal coating is placed in the second opening through which the active medium is pumped transversely. The active medium used is the Rhodamine 6G dye dissolved in glycerine, which is pumped by the 337.1-nm wavelength laser pulses of a nitrogen TEA laser. The ferrule-based design allows for a simplified set-up procedure and the integration of the pumping system to the basic structure of the laser, thus making it very compact. The design of the light source presented allows its future use in applications, such as lab-on-a-fiber, lab-on-a-chip and total analysis micro systems.
We report the experimental results of a fiber-based Fabry-Perot cavity dye laser structure. The structure is transversely pumped by a pulsed blue laser diode through an optical fiber. The active medium used consists of the dye fluorescein sodium dissolved in glycerine. A lasing around 580 nm has been observed when the laser threshold energy of about 46 nJ pulse −1 is reached. The results will contribute to the creation of a fully integrated diode-pumped all-fiber-optic dye laser source.
An experimental study of a fluorescent broadband light source fully compatible with optical fibers is presented in the article, with the aim of using it for excitation-emission matrix fluorescence spectroscopy. A fiber optic glass ferrule filled with a solution of Rhodamine 6G in glycerin was used for the basic construction of the light source. The ferrule is coupled with optical fibers to illuminate the dye medium and to receive the fluorescent signal. A tuning of the light spectrum from the source between 528 nm and 660 nm with a shift of 1 nm is achieved by means of a monochromator. Full Text: PDF ReferencesN. Hoinka and T. Fuhrmann-Lieker, "Amplified Spontaneous Emission in Paper", Sci. Rep. 9, 1 (2019), CrossRef J. Włodarski, M. Chychłowski, "Chemically tuned light source with an optical pump", Photonics Lett. Pol. 13(2), 46 (2021). CrossRef J. Żmojda, P. Miluski, M. Kochanowicz, J. Dorosz, A. Baranowska, M. Leśniak and D. Dorosz, "Luminescent properties of active optical fibers", Photonics Lett. Pol. 11(2), 50 (2019). CrossRef K. Jakubowski, W. Kerkemeyer, E. Perret, M. Heuberger, R. Hufenus, "Liquid-core polymer optical fibers for luminescent waveguide applications", Mater. Des. 196, 1 (2020). CrossRef V. Vladev, T. Eftimov, "Fiberized fluorescent dye microtubes", Proc. SPIE 8770, 87700V-1 (2013). CrossRef V. Vladev, T. Eftimov, W. Bock, "Broad-band fluorescent all-fiber source based on microstructured optical fibers", Photonics Lett. Pol., 7(2), 41 (2015). CrossRef V. Vladev, T. Eftimov, W. Bock, "Fluorescent all-fiber light source based on micro-capillaries and on microstructured optical fibers terminated with a microbulb", Opt. Comm. 356, 34 (2015). CrossRef V. Vladev, T. Eftimov, S. Nedev, "Excitation efficiency of a side-pumped fiberized fluorescent dye microcapillary", Opt. Fib. Tech. 28, 28 (2016). CrossRef V. Vladev, M. Todorova, V. Slavchev, M. Brazkova, E. Belina, S. Bozhkov, P. Radusheva, "A new basic structure suitable for a fully integrated all-fiber-optic stimulated emission dye source", J. Phys.: Conf. Ser. 1859 (012059), 1 (2021). CrossRef V. P. Vladev, M. M. Todorova, M. S. Brazkova, S. I. Bozhkov, "Diode-pumped all-fiber-optic liquid dye laser", Laser Phys. Lett. 18 (11), 115103 (2021), CrossRef G. Dyankov, T. A. Eftimov, N. Malinowski, E. Belina, H. Kisov, P. Mikulic, W. J. Bock, "A highly efficient biosensor based on MAPLE deposited hemoglobin on LPGs around phase matching turning point", Opt. Laser Technol. 123, 1 (2020). CrossRef T. Eftimov, G. Dyankov, A. Arapova, P. Kolev and V. Vladev, W4.73 , OFS-27, Optical Fiber Sensor Conference - 2022, 29 Aug- 2 Sept., The Westin Alexandria, Alexandria, Virginia, USA. CrossRef G. Rossi, J. Durek, S. Ojha, O. K. Schlüter, "Fluorescence-based characterisation of selected edible insect species: Excitation emission matrix (EEM) and parallel factor (PARAFAC) analysis", CRFS 4, 862 (2021). CrossRef L. Li, Y. Wang, W. Zhang, S. Yu, X. Wang, N. Gao, "New advances in fluorescence excitation-emission matrix spectroscopy for the characterization of dissolved organic matter in drinking water treatment: A review Author links open overlay panel", Chem. Eng. J. 381, 1 (2020). CrossRef
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.