Defined growth conditions are essential for many applications of human embryonic stem cells (hESC). Most defined media are presently used in combination with Matrigel, a partially defined extracellular matrix (ECM) extract from mouse sarcoma. Here, we defined ECM requirements of hESC by analyzing integrin expression and ECM production and determined integrin function using blocking antibodies. hESC expressed all major ECM proteins and corresponding integrins. We then systematically replaced Matrigel with defined medium supplements and ECM proteins. Cells attached efficiently to natural human vitronectin, fibronectin, and Matrigel but poorly to laminin ؉ entactin and collagen IV. Integrin-blocking antibodies demonstrated that ␣V5 integrins mediated adhesion to vitronectin, ␣51 mediated adhesion to fibronectin, and ␣61 mediated adhesion to laminin ؉ entactin. Fibronectin in feeder cell-conditioned medium partially supported growth on all natural matrices, but in defined, nonconditioned medium only Matrigel or (natural and recombinant) vitronectin was effective. Recombinant vitronectin was the only defined functional alternative to Matrigel, supporting sustained self-renewal and pluripotency in three independent hESC lines. STEM
NKX2-5 is expressed in the heart throughout life. We targeted eGFP sequences to the NKX2-5 locus of human embryonic stem cells (hESCs); NKX2-5(eGFP/w) hESCs facilitate quantification of cardiac differentiation, purification of hESC-derived committed cardiac progenitor cells (hESC-CPCs) and cardiomyocytes (hESC-CMs) and the standardization of differentiation protocols. We used NKX2-5 eGFP(+) cells to identify VCAM1 and SIRPA as cell-surface markers expressed in cardiac lineages.
Pluripotent stem cells self-renew indefinitely and possess characteristic protein-protein networks that remodel during differentiation. How this occurs is poorly understood. Using quantitative mass spectrometry, we analyzed the (phospho)proteome of human embryonic stem cells (hESCs) during differentiation induced by bone morphogenetic protein (BMP) and removal of hESC growth factors. Of 5222 proteins identified, 1399 were phosphorylated on 3067 residues. Approximately 50% of these phosphosites were regulated within 1 hr of differentiation induction, revealing a complex interplay of phosphorylation networks spanning different signaling pathways and kinase activities. Among the phosphorylated proteins was the pluripotency-associated protein SOX2, which was SUMOylated as a result of phosphorylation. Using the data to predict kinase-substrate relationships, we reconstructed the hESC kinome; CDK1/2 emerged as central in controlling self-renewal and lineage specification. The findings provide new insights into how hESCs exit the pluripotent state and present the hESC (phospho)proteome resource as a complement to existing pluripotency network databases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.