Expertly collected, well-curated data sets consisting of comprehensive clinical characterization and raw structural, functional and diffusion-weighted DICOM images in schizophrenia patients and sex and age-matched controls are now accessible to the scientific community through an on-line data repository (coins.mrn.org). The Mental Illness and Neuroscience Discovery Institute, now the Mind Research Network (MRN, www.mrn.org), comprised of investigators at the University of New Mexico, the University of Minnesota, Massachusetts General Hospital, and the University of Iowa, conducted a cross-sectional study to identify quantitative neuroimaging biomarkers of schizophrenia. Data acquisition across multiple sites permitted the integration and cross-validation of clinical, cognitive, morphometric, and functional neuroimaging results gathered from unique samples of schizophrenia patients and controls using a common protocol across sites. Particular effort was made to recruit patients early in the course of their illness, at the onset of their symptoms. There is a relatively even sampling of illness duration in chronic patients. This data repository will be useful to 1) scientists who can study schizophrenia by further analysis of this cohort and/or by pooling with other data; 2) computer scientists and software algorithm developers for testing and validating novel registration, segmentation, and other analysis software; and 3) educators in the fields of neuroimaging, medical image analysis and medical imaging informatics who need exemplar data sets for courses and workshops. Sharing provides the opportunity for independent replication of already published results from this data set and novel exploration. This manuscript describes the inclusion/exclusion criteria, imaging parameters and other information that will assist those wishing to use this data repository.
Previous studies have found varying relationships between cognitive functioning and brain volumes in patients with schizophrenia. However, cortical thickness may more closely reflect cytoarchitectural characteristics than gray matter density or volume estimates. Here, we aimed to compare associations between regional variation in cortical thickness and executive functions, memory, as well as verbal and spatial processing in patients with schizophrenia and healthy controls (HCs). We obtained magnetic resonance imaging and neuropsychological data for 131 patients and 138 matched controls. Automated cortical pattern matching methods allowed testing for associations with cortical thickness estimated as the shortest distance between the gray/white matter border and the pial surface at thousands of points across the entire cortical surface. Two independent measures of working memory showed robust associations with cortical thickness in lateral prefrontal cortex in HCs, whereas patients exhibited associations between working memory and cortical thickness in the right middle and superior temporal lobe. This study provides additional evidence for a disrupted structure-function relationship in schizophrenia. In line with the prefrontal inefficiency hypothesis, schizophrenia patients may engage a larger compensatory network of brain regions other than frontal cortex to recall and manipulate verbal material in working memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.