BackgroundThe prescription of the oral anticoagulant rivaroxaban to prevent thromboembolic episodes associated with orthopaedic surgery has dramatically increased since it was introduced. Rivaroxaban is beeing prescribed although recent in-vitro studies revealed that it impaired osteoblast metabolism. In this study we analysed the effect of rivaroxaban on fracture healing in a rat femur fracture model.MethodsFemur fractures were created by a 3-point-bending device in 48 Wistar rats and subsequently stabilized by intramedullary nailing. After the surgical procedure animals were randomised into four groups. Two groups were fed with 3 mg rivaroxaban per kg body weight per day and two control groups were fed with chow only. Animals were euthanized 28 or 49 days after surgical procedure. Femurs underwent undecalcified histologic staining micro CT scanning and biomechanical testing. The statistical significance was evaluated using one-way Anova with Bonferroni correction.ResultsMicro CT-scans revealed significantly increased volume of bone tissue in the fracture zone between day 28 and 49. During the same time callus volume decreased significantly. Comparing the fracture zone of the rivaroxaban group to the control group the treated group revealed a larger callus and a marginal increase of the tissue mineral density. The torsional rigidity was not influenced by the treatment of rivaroxaban.ConclusionIn the present study we were able to demonstrate that rivaroxaban does not impair fracture healing in a rat femur fracture model. Considering the fact that low molecular weight heparins delay fracture healing significantly, rivaroxaban might be an improved alternative.
BackgroundBisphosphonates are a main component in the therapy of osteoporosis and other bone resorptive diseases. Previous studies have shown a positive effect of systemically applied bisphosphonates on fracture healing. Nevertheless high doses are related to side effects like osteonecrosis of the jaw, nephrotoxis and gastrointestinal symptoms. In this study we investigated the effect of locally applied pamidronate on fracture healing.MethodsIn a rodent model a simple femur fracture was set in female Wistar rats. We performed intramedullary fixation of the fracture and placed a collagen matrix around the fracture area. One group was treated with pamidronate, the other group with placebo via the matrix.To investigate the volume and quality of the callus we used micro-CT (μCT) and histology after 14 and 28 days.ResultsOur results show a positive influence of local applied pamidronate on callus volume. After 14 days an insignificant increase of callus volume in the treated animals was seen. 28 days after trauma the increase of callus volume in the treatment group was significantly higher in comparison to the control group. Osteonecrosis was not seen.ConclusionsLocally applied bisphosphonates increase the callus volume in fracture healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.