Although not designed as a formal interobserver study, the current study suggests that comparing available literature data on cortical lesions may be problematic, and increased consistency in acquisition protocols may improve scoring agreement. Sensitivity and specificity of the proposed recommendations should now be studied in a more formal, prospective, multicenter setting using similar DIR protocols.
Task-functional magnetic resonance imaging studies have shown that early cortical recruitment exists in multiple sclerosis, which can partly explain the discrepancy between conventional magnetic resonance imaging and clinical disability. The study of the brain 'at rest' may provide additional information, because task-induced metabolic changes are relatively small compared to the energy use of the resting brain. We therefore questioned whether functional changes exist at rest in the early phase of multiple sclerosis, and addressed this question by a network analysis of no-task functional magnetic resonance imaging data. Fourteen patients with symptoms suggestive of multiple sclerosis (clinically isolated syndrome), 31 patients with relapsing remitting multiple sclerosis and 41 healthy controls were included. Resting state functional magnetic resonance imaging data were brought to standard space using non-linear registration, and further analysed using multi-subject independent component analysis and individual time-course regression. Eight meaningful resting state networks were identified in our subjects and compared between the three groups with non-parametric permutation testing, using threshold-free cluster enhancement to correct for multiple comparisons. Additionally, quantitative measures of structural damage were obtained. Grey and white matter volumes, normalized for head size, were measured for each subject. White matter integrity was investigated with diffusion tensor measures that were compared between groups voxel-wise using tract-based spatial statistics. Patients with clinically isolated syndrome showed increased synchronization in six of the eight resting state networks, including the default mode network and sensorimotor network, compared to controls or relapsing remitting patients. No significant decreases were found in patients with clinically isolated syndrome. No significant resting state synchronization differences were found between relapsing remitting patients and controls. Normalized grey matter volume was decreased and white matter diffusivity measures were abnormal in relapsing remitting patients compared to controls, whereas no atrophy or diffusivity changes were found for the clinically isolated syndrome group. Thus, early synchronization changes are found in patients with clinically isolated syndrome that are suggestive of cortical reorganization of resting state networks. These changes are lost in patients with relapsing remitting multiple sclerosis with increasing brain damage, indicating that cortical reorganization of resting state networks is an early and finite phenomenon in multiple sclerosis.
Memory impairment is especially prominent within the spectrum of cognitive deficits in multiple sclerosis (MS), and a crucial role for hippocampal pathology may therefore be expected in this disease. This study is the first to systematically assess hippocampal demyelination in MS. Hippocampal tissue samples of 19 chronic MS cases and 7 controls with non-neurologic disease were stained immunohistochemically for myelin proteolipid protein. Subsequently, number, location, and size of demyelinated lesions were assessed. Furthermore, the specimens were stained for HLA-DR to investigate microglia/macrophage activity. An unexpectedly high number of lesions (n = 37) was found in 15 of the 19 MS cases. Mixed intrahippocampal-perihippocampal lesions, which were more often found in cases with cognitive decline, were large and did not respect anatomical borders. Moderate microglial activation was frequently observed at the edges of these mixed lesions. Isolated intrahippocampal lesions were also frequently found. These were smaller than the mixed lesions and had a specific anatomical predilection: the cornu ammonis 2 subregion and the hilus of the dentate gyrus were consistently spared. Microglial activation was rare in isolated intrahippocampal lesions. Our results indicate that hippocampal demyelination is frequent and extensive in MS and that anatomical localization, size, and inflammatory activity vary for different lesion types.
Objective: To assess the sensitivity and specificity of 3D double inversion recovery (DIR) MRI for detecting multiple sclerosis (MS) cortical lesions (CLs) using a direct postmortem MRI to histopathology comparison.Methods: Single-slab 3D DIR and 3D fluid-attenuated inversion recovery (FLAIR) images of 56 matched fresh brain samples from 14 patients with chronic MS were acquired at 1.5 T. The images of both sequences were prospectively scored for CLs in consensus by 3 experienced raters who were blinded to histopathology and clinical data. Next, CLs were identified histopathologically and were scored again on 3D DIR and 3D FLAIR (retrospective scoring). CLs were classified as intracortical or mixed gray matter (GM)-white matter lesions. Deep GM lesions were also scored. False-positive scores were noted and, from this, specificity was calculated. Results:We found a sensitivity for 3D DIR to detect MS CLs of 18%, which is 1.6-fold higher than 3D FLAIR (improves to 37% with retrospective scoring; 2.0-fold higher than 3D FLAIR). We detected mixed GM-white matter lesions with a sensitivity of 83% using 3D DIR (65% sensitivity for 3D FLAIR), which improved to 96% upon retrospective scoring (91% for 3D FLAIR). For purely intracortical lesions, 3D DIR detected more than 2-fold more than 3D FLAIR (improved to Ͼ3-fold upon retrospective scoring). The specificity of 3D DIR to MS CLs was found to be 90%. Conclusions:In this postmortem verification study, we have shown that 3D DIR is highly pathologically specific, and more sensitive to CLs than 3D FLAIR in MS. Neurology ® 2012;78:302-308 GLOSSARY BSA ϭ bovine serum albumin; CL ϭ cortical lesion; DIR ϭ double inversion recovery; FLAIR ϭ fluid-attenuated inversion recovery; GM ϭ gray matter; MS ϭ multiple sclerosis; NEX ϭ number of excitations; PBS ϭ phosphate-buffered saline; PLP ϭ proteolipid protein; TE ϭ echo time; TI ϭ inversion time; TR ϭ repetition time; WM ϭ white matter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.