Allatostatins, originally identified in insects as peptide inhibitors of juvenile hormone biosynthesis, are regarded as potent inhibitory regulators of intestinal muscles in insects and crustaceans. However, accumulating data indicate that allatostatins might also be involved in modulation of skeletal neuromuscular events. We show that most ganglia of two isopod crustaceans (Idotea baltica and I. emarginata) contain pairs of large, allatostatin-immunoreactive motor neurons which supply several segmental muscles. Among them are the dorsal extensor muscles, of which some fibres receive immunoreactive, varicose innervation. We demonstrate, on identified muscle fibres, that allatostatin exerts a twofold inhibitory effect: it reduces contractions of single voltage-clamped fibres, and it decreases the amplitude of evoked excitatory junctional currents recorded from individual release boutons. No change in excitation-contraction threshold or in passive membrane parameters was observed. As the amplitude of miniature currents generated by spontaneously released single transmitter quanta was not changed, the inhibitory effect of the peptide on junctional currents must be of presynaptic origin. Supportive results were obtained on leg muscles of the crab Eriphia spinifrons, where allatostatin decreased evoked synaptic currents by reducing the mean number of transmitter quanta released by presynaptic depolarization without affecting the amplitudes of currents generated by single quanta. This effect of allatostatin was similar for two functionally different neurons, the slow and the fast closer excitor. The data show that allatostatin occurs in identified motor neurons of Idotea and exerts complementary pre- and postsynaptic modulatory effects which reduce muscle responses. Thus, allatostatin counteracts the effects of another neuropeptide, proctolin, which is also present in Idotea and causes potentiating effects on the same muscle fibres.
The effect of the biogenic amines octopamine and serotonin, and of both amines combined (cocktails) on transmitter release at neuromuscular junctions of two crustaceans was studied. octopamine (10(-8) mol l(-1) to 10(-6) mol l(-1)) either enhanced or decreased evoked transmitter release through presynaptic effects. The results were identical for the slow and the fast excitor in the closer muscle of the crab, and for the excitor in the opener muscle of the crayfish. Application of serotonin always resulted in a strong increase of release. However, this potentiating effect of serotonin was reduced in strength by subsequent application of cocktails consisting of serotonin and octopamine. In all experiments, a cocktail of serotonin and octopamine was less effective than serotonin alone. The decrease in the mean quantal content m by octopamine was due to a reduction of the probability of release p. Since both amines are synthesized in the central nervous system and are released from neurohaemal organs into the haemolymph bathing the neuromuscular junctions, the results suggest that the two amines, when present together, modulate transmitter release in an antagonistic way, and that the level of the two determines synaptic efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.