Astroviruses (AstV) are a major cause of diarrhoea in children. Interestingly, some wildlife species, including bats, remain phenotypically asymptomatic after infection. Disease symptoms, however, may only be less visible in bats and enteric viruses may indeed perturb their gut microbial communities. Gut microbiomes represent an important driver of immune defence mechanisms but potential effects of enteric virus-host microbiome interactions are largely unexplored. Using bats as a natural model system, we show that AstV-infections affect the gut microbiome, with the strength of the effect depending on host age. The gut microbial α- and β-diversity and the predicted microbial functional orthologs decreased in young bats but surprisingly increased in adult AstV + bats. The abundance of bacterial taxa characteristic for healthy microbiomes was strongly reduced in young AstV+ bats, possibly attributable to their immature immune system. Regardless of age, pathogen-containing genera exhibited negative interactions with several commensal taxa and increased after AstV-infection, leading to pathobiont-like shifts in the gut microbiome of all infected bats. Thus, in apparently healthy bats, AstV-infections disturb gut bacterial homeostasis, possibly increasing previously suppressed health risks by promoting co-infections. If similar processes are present in humans, the effects of enteric virus infections might have longer-term impacts extending beyond the directly observed symptoms.
Parasites represent a large fraction of the world's biodiversity. They control host population sizes and contribute to ecosystem functioning. However, surveys on species diversity rarely include parasitic species. Bats often present traits favoring parasite diversity, such as large home ranges, long life spans, and large colonies. The most conspicuous bat parasites are the highly host-specific, blood-sucking bat flies (Diptera:Streblidae, Nycteribiidae). Recent studies have found a direct effect of habitat alteration on the abundance of bat species. We expected, therefore, that changes in the host community in response to anthropogenic habitat modification will also result in changes in the associated parasite community. We captured bats in three different habitats in Central Panama between 2013 and 2015. We recorded information on prevalence and intensity of bat fly parasitization of the seven most commonly captured bat species. Prevalence and intensity were both significantly influenced by roost type, abundance, and host sex and age. We found that habitat variables and matrix type significantly influenced the prevalence and intensity of parasitization, while the direction of the responses was host species-and parasite species-specific. In general, roosting conditions and behavior of host bats appear to be fundamental in explaining changes in prevalence and intensity of parasitization between different habitat types, as bat flies are bound to the roost during their reproductive cycle. Habitat alterations affect next to the host community composition also the availability of possible roost structures as well as microclimatic conditions, which all three reflect in parasitization.Abstract in Spanish is available with online material. K E Y
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.