Antibody detection is of fundamental importance in many diagnostic and bioanalytical assays, yet current detection techniques tend to be laborious and/or expensive. We present a new sensor platform (LUMABS) based on bioluminescence resonance energy transfer (BRET) that allows detection of antibodies directly in solution using a smartphone as the sole piece of equipment. LUMABS are single-protein sensors that consist of the blue-light emitting luciferase NanoLuc connected via a semiflexible linker to the green fluorescent acceptor protein mNeonGreen, which are kept close together using helper domains. Binding of an antibody to epitope sequences flanking the linker disrupts the interaction between the helper domains, resulting in a large decrease in BRET efficiency. The resulting change in color of the emitted light from green-blue to blue can be detected directly in blood plasma, even at picomolar concentrations of antibody. Moreover, the modular architecture of LUMABS allows changing of target specificity by simple exchange of epitope sequences, as demonstrated here for antibodies against HIV1-p17, hemagglutinin (HA), and dengue virus type I. The combination of sensitive ratiometric bioluminescent detection and the intrinsic modularity of the LUMABS design provides an attractive generic platform for point-of-care antibody detection that avoids the complex liquid handling steps associated with conventional immunoassays.
The purpose of this study is to investigate the attenuation characteristics of a novel radiofrequency (RF) coil, which is the first coil that is solely dedicated to MR guided radiotherapy with a 1.5 T MR-linac. Additionally, we investigated the impact of the treatment beam on the MRI performance of this RF coil. First, the attenuation characteristics of the RF coil were characterized. Second, we investigated the impact of the treatment beam on the MRI performance of the RF coil. We additionally demonstrated the ability of the anterior coil to attenuate returning electrons and thereby reducing the dose to the skin at the distal side of the treatment beam. Intensity modulated radiation therapy simulation of a clinically viable treatment plan for spinal bone metastasis shows a decrease of the dose to the planned tumor volume of 1.8% as a result of the MR coil around the patient. Ionization chamber and film measurements show that the anterior and posterior coil attenuate the beam homogeneously by 0.4% and 2.2%, respectively. The impact of the radiation resulted in a slight drop of the time-course signal-to-noise ratio and was dependent on imaging parameters. However, we could not observe any image artifacts resulting from this irradiation in any situation. In conclusion, the investigated MR-coil can be utilized for treatments with the 1.5 T-linac system. However, there is still room for improvement when considering both the dosimetric and imaging performance of the coil.
The lack of radiation-attenuating tuning capacitors in high impedance coils (HICs) make HICs an interesting building block of receive arrays for MRI-guided radiotherapy (MRIgRT). Additionally, their flexibility and limited channel coupling allow for low-density support materials, which are likely to be more radiation transparent (radiolucent). In this work, we introduce the use of HICs in receive arrays for MRIgRT treatments. We discuss the design and show the dosimetric feasibility of a HIC receive array that has a high channel count and aims to improve the imaging performance of the 1.5 T MR-linac. Our on-body design comprises an anterior and posterior element, which each feature a channel layout (32 channels total). The anterior element is flexible, while the posterior element is rigid to support the patient. Mockups consisting of support materials and conductors were built, irradiated, and optimized to minimize impact on the surface dose (7% of the dose maximum) and dose at depth ( 0.8% under a single conductor and 1.4% under a conductor crossing). Anatomical motion and the use of multiple beam angles will ensure that these slight dose changes at depth are clinically insignificant. Subsequently, several functional, single-channel HIC imaging prototypes and a 5-channel array were built to assess the performance in terms of signal-to-noise ratio (SNR). The performance was compared to the clinical MR-linac array and showed that the 5-channel imaging prototype outperformed the clinical array in terms of SNR and channel coupling. Imaging performance was not affected by the radiation beam. In conclusion, the use of HICs allowed for the design of our flexible, on-body receive array for MRIgRT. The design was shown to be dosimetrically feasible and improved the SNR. Future research with a full array will need to show the gain in parallel imaging performance and thus acceleration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.