The transduction of electric signals from cells to electronic devices is mandatory for medical applications such as neuroprostheses and fundamental research on communication in neuronal networks. Here, the use of diamond with its advantages for biological applications as a new material for biohybrid devices for the detection of cell signals is investigated. Using the surface conductivity of hydrogen‐terminated single‐crystalline diamond substrates, arrays of solution‐gate field‐effect transistors were fabricated. The characterization of the transistors reveals a good stability in electrolyte solutions for at least 7 days. On these devices, cardiomyocyte‐like HL‐1 cells as well as human embryonic kidney cells (HEK293), which were stably transfected with potassium channels, are cultured. Both types of cells show healthy growth and good adhesion to the substrate. The diamond transistors are used to detect electrical signals from both types of cells by recording the extracellular potential. For the HL‐1 cells, the shape of action potentials can be resolved and the propagation of the signal across the cell layer is visible. Potassium currents of HEK293 cells are activated with the patch‐clamp technique in voltage‐clamp mode and simultaneously measured with the field‐effect transistors. The ion sensitivity of the diamond surface enables the detection of released potassium ions accumulated in the cleft between transistor and cell.
We present the first in vitro extracellular stimulation of individual neurons from dissociated cultures with iridium oxide (IrOx) electrodes. Microelectrode arrays with sputtered IrOx films (SIROF) were developed for electrophysiological investigations with electrogenic cells. The microelectrodes were characterized with scanning electron and atomic force microscopy, revealing rough and porous electrodes with enlarged surface areas. As shown by cyclic voltammetry and electrochemical impedance spectroscopy, the large surface area in combination with the good electrochemical properties of SIROF resulted in high charge storage capacity and low electrode impedance. Thus, we could transfer the good properties of IrOx as material for in vivo stimulation electrodes to multi-electrode arrays with electrode diameters as small as 10 μm for in vitro applications. Single rat cortical neurons from dissociated cultures were successfully stimulated to fire action potentials using single or trains of biphasic rectangular voltage-controlled stimulation pulses. The stimulated cell's membrane potential was simultaneously monitored using whole-cell current-clamp recordings. This experimental configuration allowed direct evaluation of the influence of pulse phase sequence, amplitude, and number on the stimulation success ratio and action potential latency. Negative phase first pulses were more effective for extracellular stimulation and caused reduced latency in comparison to positive phase first pulses. Increasing the pulse amplitude also improved stimulation reliability. However, in order to prevent cell or electrode damage, the pulse amplitude is limited to voltages below the threshold for irreversible electrochemical reactions at the electrode. As an alternative to increasing the amplitude, a higher number of stimulation pulses was also shown to increase stimulation success.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.