Purpose The karyotype is a strong independent prognostic factor in myelodysplastic syndromes (MDS). Since the implementation of the International Prognostic Scoring System (IPSS) in 1997, knowledge concerning the prognostic impact of abnormalities has increased substantially. The present study proposes a new and comprehensive cytogenetic scoring system based on an international data collection of 2,902 patients. Patients and Methods Patients were included from the German-Austrian MDS Study Group (n = 1,193), the International MDS Risk Analysis Workshop (n = 816), the Spanish Hematological Cytogenetics Working Group (n = 849), and the International Working Group on MDS Cytogenetics (n = 44) databases. Patients with primary MDS and oligoblastic acute myeloid leukemia (AML) after MDS treated with supportive care only were evaluated for overall survival (OS) and AML evolution. Internal validation by bootstrap analysis and external validation in an independent patient cohort were performed to confirm the results. Results In total, 19 cytogenetic categories were defined, providing clear prognostic classification in 91% of all patients. The abnormalities were classified into five prognostic subgroups (P < .001): very good (median OS, 61 months; hazard ratio [HR], 0.5; n = 81); good (49 months; HR, 1.0 [reference category]; n = 1,809); intermediate (26 months; HR, 1.6; n = 529); poor (16 months; HR, 2.6; n = 148); and very poor (6 months; HR, 4.2; n = 187). The internal and external validations confirmed the results of the score. Conclusion In conclusion, these data should contribute to the ongoing efforts to update the IPSS by refining the cytogenetic risk categories.
Epigenetic therapy with hypomethylating drugs is now the standard of care in myelodysplastic syndrome (MDS). Response rates remain low, and mechanismbased dose optimization has not been reported. We investigated the clinical and pharmacodynamic results of different dose schedules of decitabine. Adults with advanced MDS or chronic myelomonocytic leukemia (CMML) were randomized to 1 of 3 decitabine schedules: (1) 20 mg/m 2 intravenously daily for 5 days; (2) 20 mg/m 2 subcutaneously daily for 5 days; and (3) 10 mg/m 2 intravenously daily for 10 days. Randomization followed a Bayesian adaptive design. Ninety-five patients were treated (77 with MDS, and 18 with CMML). Overall, 32 patients (34%) achieved a complete response (CR), and 69 (73%) had an objective response by the new modified International Working Group criteria. The 5-day intravenous schedule, which had the highest doseintensity, was selected as optimal; the CR rate in that arm was 39%, compared with 21% in the 5-day subcutaneous arm and 24% in the 10-day intravenous arm (P < .05). The high dose-intensity arm was also superior at inducing hypomethylation at day 5 and at activating P15 expression at days 12 or 28 after therapy. We conclude that a low-dose, doseintensity schedule of decitabine optimizes epigenetic modulation and clinical responses in MDS. (Blood. 2007;109: 52-57)
Responses can be achieved with dasatinib or nilotinib after failure of 2 prior tyrosine kinase inhibitors (TKIs). We report on 48 chronic myeloid leukemia patients sequentially treated with 3 TKIs: 34 with dasatinib after imatinib/nilotinib failure and 14 with nilotinib after imatinib/dasatinib failure. Before the third TKI, 25 patients were in chronic phase (CP), 10 in accelerated phase (AP), and 13 in blast phase (BP). Best response to third TKI in CP was 5 major molecular responses (MMR), 3 complete cytogenetic (CCyR), 2 partial cytogenetic (PCyR), 3 minor cytogenetic (mCyR), 6 complete hematologic responses (CHR), and 6 with no response (NR). In AP, 1 patient achieved MMR, 1 CCyR, 2 PCyR, 1 mCyR, 4 CHR, and 1 NR. In BP, 1 achieved MMR, 2 CCyR, 1 PCyR, 1 mCyR, 2 returned to CP, and 6 NR. Median CCyR duration was 16.3 months; 3 CP patients achieving CCyR had a response more than 12 months. Median failure-free survival was 20 months for patients in CP, 5 months in AP, and 3 months in BP. Use of second-generation TKI after failure to 2 TKIs may induce responses, but these are usually not durable except in some CP patients. New treatment options are needed.
BackgroundSorafenib is a multi-kinase inhibitor with activity against fms-like tyrosine kinase 3 with internal tandem duplication mutation and Raf kinase among others. A phase I dose escalation study of sorafenib was conducted in patients with advanced myelodysplastic syndrome and relapsed or refractory acute leukemias. Design and MethodsFifty patients received one of two different schedules; Schedule "A": once or twice daily, five days per week, every week for a 21 day cycle, and Schedule "B": once or twice daily, for 14 days every 21 days. Dose limiting toxicities were grade 3/4 hypertension, hyperbilirubinemia, and amylase elevation. The recommended phase II dose in hematologic malignancies is 400 mg twice daily for both schedules. ResultsComplete remissions or complete remissions with incomplete recovery of platelets were achieved in 5 (10%) patients (all with fms-like tyrosine kinase 3-internal tandem duplication). Significant reduction in bone marrow and/or peripheral blood blasts was seen in an additional 17 (34%) patients (all with fms-like tyrosine kinase 3-internal tandem duplication). Eleven of these responses (including 3 complete remissions/complete remissions with incomplete recovery) lasted for 2 cycles or beyond. In conclusion, sorafenib is active and well tolerated in acute myelogenous leukemia with fms-like tyrosine kinase 3 internal tandem duplication mutation. ConclusionsAdditional studies of sorafenib in patients with acute myelogenous leukemia, particularly those with fms-like tyrosine kinase 3 internal tandem duplication, are warranted, including sorafenibbased combinations. (ClinicalTrials.
Purpose: Molecular characterization of Philadelphia chromosome^negative (Ph-) chronic myeloproliferative disorders, such as systemic mastocytosis (SM), has provided a clear rationale for investigating novel targeted therapies. The tyrosine kinase (TK) inhibitor dasatinib is 325-fold more potent against Bcr-Abl TK than imatinib in vitro, significantly inhibiting wild-type KIT and platelet-derived growth factor receptor h TKs, and is active against cells carrying the mutant KIT-D816V gene. Experimental Design: In this phase 2, open-label study, the efficacy of dasatinib (140 mg/d) was investigated in 67 patients with various Ph-myeloid disorders, including SM (n = 33; 28 KIT-D816V positive). Results: The overall response rate to dasatinib in patients with SM was 33%. Only two patients, one with SM-myelofibrosis and one with SM-chronic eosinophilic leukemia, achieved complete response (elimination of mastocytosis) lasting for 5 and 16 months, respectively. Both patients were negative for KIT-D816V mutation, had low tryptase levels, abnormal WBC counts, and anemia, and had failed prior therapy with erythropoietin. Additional nine SM patients had symptomatic response, lasting 3 to 18+ months. Complete responses were achieved in two other patients (acute myeloid leukemia and hypereosinophilic syndrome). No responses were observed among patients with myelodysplastic syndromes and primary myelofibrosis. The majority of adverse events were grade 1/2. Conclusion: These data show that dasatinib therapy may benefit a selected group of SM patients, primarily by improving their symptoms, but it does not eliminate the disease in the patients with KIT-D816V mutation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.