Abstract. Reengineering a legacy product line has been addressed very little by current product line research activities. This paper introduces a method to investigate feature dependencies and interactions, which restricts the variants that can be derived from the legacy product line assets. Reorganizing the product line assets with respect to new requirements requires more knowledge than what is easily provided by the classical feature-modeling approaches. Hence, adding all the feature dependencies and interactions into the feature tree results in unreadable and unmanageable feature models that fail to achieve their original goals. We therefore propose two complementary views to represent the feature model. One view shows the hierarchical refinement of features similar to common featuremodeling approaches in a feature tree. The second view describes what kind of dependencies and interactions there are between various features. We show two examples of feature dependencies and interactions in the context of an engine-control software product line, and we demonstrate how our approach helps to define correct product configurations from product line variants.
Car Periphery Supervision (CPS) systems comprise a family of automotive systems that are based on sensors installed around the vehicle to monitor its environment. The measurement and evaluation of sensor data enables the realization of several kinds of higher level applications such as parking assistance or blind spot detection. Although a lot of similarity can be identified among CPS applications, these systems are traditionally built separately. Usually, each single system is built with its own electronic control unit, and it is likely that the application software is bound to the controller's hardware. Current systems engineering therefore often leads to a large number of inflexible, dedicated systems in the automobile that together consume a large amount of power, weight, and installation space and produce high manufacturing and maintenance costs. This paper reports on an initiative undertaken by the Bosch Group in applying a product line development approach to develop CPS systems economically. Product line development represents a multi-system engineering approach which takes common and variable aspects between systems in the same application domain into account. It provides a basis to develop a line of products economically based on a common system architecture and reusable components.A product line allows the degree of reusability to be optimized across different systems while simultaneously preserving the overall quality. This supports the need to develop more integrated and flexible multi-functional systems quickly and cost-effectively. The purpose of this paper is to report on the experiences and results obtained from a case study in developing a product line of CPS systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.