We present results from experiments with granular packings in three dimensions in microgravity as realized on parabolic flights. Two different techniques are employed to monitor the inside of the packings during compaction: (1) X-ray radiography is used to measure in transmission the integrated fluctuations of particle positions. (2) Stress-birefringence in three dimensions is applied to visualize the stresses inside the packing. The particle motions below the transition into an arrested packing are found to produce a well agitated state. At the transition, the particles lose their energy quite rapidly and form a stress network. With both methods, non-arrested particles (rattlers) can be identified. In particular, it is found that rattlers inside the arrested packing can be excited to appreciable dynamics by the restaccelerations (g-jitter) during a parabolic flight without destroying the packings. At low rates of compaction, a regime of slow granular cooling is identified. The slow cooling extends over several seconds, is described well by a linear law, and terminates in a rapid final collapse of dynamics before complete arrest of the packing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.