E2F-6 contributes to gene silencing in a manner independent of retinoblastoma protein family members. To better elucidate the molecular mechanism of repression by E2F-6, we have purified the factor from cultured cells. E2F-6 is found in a multimeric protein complex that contains Mga and Max, and thus the complex can bind not only to the E2F-binding site but also to Myc- and Brachyury-binding sites. Moreover, the complex contains chromatin modifiers such as a novel histone methyltransferase that modifies lysine 9 of histone H3, HP1gamma, and Polycomb group (PcG) proteins. The E2F-6 complex preferentially occupies target promoters in G0 cells rather than in G1 cells. These data suggest that these chromatin modifiers contribute to silencing of E2F- and Myc-responsive genes in quiescent cells.
Here we report the identification of the LIN complex (LINC), a human multiprotein complex that is required for transcriptional activation of G 2 /M genes. LINC is related to the recently identified dREAM and DRM complexes of Drosophila and C. elegans that contain homologs of the mammalian retinoblastoma tumor suppressor protein. The LINC core complex consists of at least five subunits including the chromatin-associated LIN-9 and RbAp48 proteins. LINC dynamically associates with pocket proteins, E2F and B-MYB during the cell cycle. In quiescent cells, LINC binds to p130 and E2F4. During cell cycle entry, E2F4 and p130 dissociate and LINC switches to B-MYB and p107. Chromatin Immunoprecipitation experiments demonstrate that LINC associates with a large number of E2F-regulated promoters in quiescent cells. However, RNAi experiments reveal that LINC is not required for repression. In S-phase, LINC selectively binds to the promoters of G 2 /M genes whose products are required for mitosis and plays an important role in their cell cycle dependent activation.
Merkel cell carcinoma (MCC) is a highly aggressive skin cancer that frequently harbours Merkel cell polyomavirus (MCV) DNA integrated in the genome of the tumor cells. In our study, we elaborate our recent finding that MCV-positive MCC cell lines require the expression of the viral T antigens (TA). Indeed, in a xeno-transplantation model, we prove that TA expression is essential also in an in vivo situation, as knock down of TA leads to tumor regression. Moreover, rescuing TA short hairpin RNA (shRNA)-treated MCV-positive MCC cells by ectopic expression of shRNA-insensitive TAs clearly demonstrates that the observed effect is caused by TA knockdown. Notably, introduction of a mutation in the LTA protein interfering with LTA binding to the retinoblastoma protein (RB) ablated this rescue. The importance of this interaction was further confirmed as LTA-specific knockdown leads to explicit cell growth inhibition. In summary, the presented data demonstrate that established MCV-positive MCC tumors critically depend on TA expression, in particular the LTA and RB interaction, for sustained tumor growth. Consequently, interference with LTA/RB interaction appears as promising strategy to treat MCC.
E2F transcription factors are major regulators of cell proliferation. The diversity of the E2F family suggests that individual members perform distinct functions in cell cycle control. E2F4 and E2F5 constitute a defined subset of the family. Until now, there has been little understanding of their individual biochemical and biological functions. Here, we report that simultaneous inactivation of E2F4 and E2F5 in mice results in neonatal lethality, suggesting that they perform overlapping functions during mouse development. Embryonic fibroblasts isolated from these mice proliferated normally and reentered from Go with normal kinetics compared to wild-type cells. However, they failed to arrest in G1 in response to p16INK4a. Thus, E2F4 and E2F5 are dispensable for cell cycle progression but necessary for pocket protein-mediated G1 arrest of cycling cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.