Silicon heterojunction (SHJ) solar cells are highly interesting, because of their high efficiency and low cost fabrication. So far, the most applied transparent conductive oxide (TCO) is indium tin oxide (ITO). The replacement of ITO with cheaper, more abundant and environmental friendly material with texturing capability is a promising way to reduce the production cost of the future SHJ solar cells. Here, we report on the fabrication of the SHJ solar cells with direct current-sputtered aluminum-doped zinc oxide (ZnO:Al) as an alternative TCO. Furthermore, we address several important differences between ITO and the ZnO:Al layers including a high Schottky barrier at the emitter/ZnO:Al interface and a high intrinsic resistivity of the ZnO:Al layers. To overcome the high Schottky barrier, we suggest employing micro-crystalline silicon (μc-Si:H) emitter, which also improves temperature threshold and passivation of the solar cell precursor. In addition, we report on the extensive studies of the effect of the ZnO:Al deposition parameters including layer thickness, oxygen flow, power density and temperature on the electrical properties of the fabricated SHJ solar cells. Finally, the results of our study indicate that the ZnO:Al deposition parameters significantly affect the electrical properties of the obtained solar cell. By understanding and fine-tuning all these parameters, a high conversion efficiency of 19.2% on flat wafer (small area (5 × 5 mm 2 ) and without any front metal grid) is achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.