Exoscopic surgery promises alleviation of physical strain, improved intraoperative visualization and facilitation of the clinical workflow. In this prospective observational study, we investigate the clinical usability of a novel 3D4K-exoscope in routine neurosurgical interventions. Questionnaires on the use of the exoscope were carried out. Exemplary cases were additionally video-documented. All participating neurosurgeons (n = 10) received initial device training. Changing to a conventional microscope was possible at all times. A linear mixed model was used to analyse the impact of time on the switchover rate. For further analysis, we dichotomized the surgeons in a frequent (n = 1) and an infrequent (n = 9) user group. A one-sample Wilcoxon signed rank test was used to evaluate, if the number of surgeries differed between the two groups. Thirty-nine operations were included. No intraoperative complications occurred. In 69.2% of the procedures, the surgeon switched to the conventional microscope. While during the first half of the study the conversion rate was 90%, it decreased to 52.6% in the second half (p = 0.003). The number of interventions between the frequent and the infrequent user group differed significantly (p = 0.007). Main reasons for switching to ocular-based surgery were impaired hand–eye coordination and poor depth perception. The exoscope investigated in this study can be easily integrated in established neurosurgical workflows. Surgical ergonomics improved compared to standard microsurgical setups. Excellent image quality and precise control of the camera added to overall user satisfaction. For experienced surgeons, the incentive to switch from ocular-based to exoscopic surgery greatly varies.
Background Exoscopic surgery promises alleviation of physical strain, improved intraoperative visualization and facilitation of the clinical workflow. In this prospective observational study we investigate the clinical usability of a novel 3D4K-exoscope in routine neurosurgical interventions. Methods Questionnaires on the use of the exoscope were carried out. Exemplary cases were additionally video-documented. All participating neurosurgeons (n=10) received initial device training. Changing to a conventional microscope was possible at all times. A linear mixed model was used to analyze the impact of time on the switchover rate. For further analysis we dichotomized the surgeons in a frequent (n=1) and an infrequent (n=9) user group. A one-sample Wilcoxon signed rank test was used to evaluate, if the number of surgeries differed between the two groups. Results 39 operations were included. No intraoperative complications occurred. In 69.2% of the procedures, the surgeon switched to the conventional microscope. While during the first half of the study the conversion rate was 90%, it decreased to 52.6% in the second half ( p =0.003). The number of interventions between the frequent and the infrequent user group differed significantly ( p =0.007). Main reasons for switching to ocular-based surgery were impaired hand-eye coordination and poor depth perception. Conclusion The exoscope investigated in this study can be easily integrated in established neurosurgical workflows. Surgical ergonomics improved compared to standard microsurgical setups. Excellent image quality and precise control of the camera added to overall user satisfaction. For experienced surgeons, the incentive to switch from ocular-based to exoscopic surgery greatly varies.
Objectives: Moyamoya vasculopathy (MMV) is a rare stenoocclusive cerebrovascular disease associated with increased risk of ischemic and hemorrhagic stroke, which can be treated using surgical revascularization techniques. Despite well-established neurosurgical procedures performed in experienced centers, bypass failure associated with neurological symptoms can occur. The current study therefore aims at characterizing the cases of bypass failure and repeat revascularization at a single center.Methods: A single-center retrospective analysis of all patients treated with revascularization surgery for MMV between January 2007 and December 2019 was performed. Angiographic data, cerebral blood flow analysis [H2O PET or single-photon emission CT (SPECT)], MRI, and clinical/operative data including follow-up assessments were reviewed.Results: We identified 308 MMV patients with 405 surgically treated hemispheres. Of the 405 hemispheres treated, 15 patients (3.7%) underwent repeat revascularization (median age 38, time to repeat revascularization in 60% of patients was within 1 year of first surgery). The most common cause of repeat revascularization was a symptomatic bypass occlusion (80%). New ischemic lesions were found in 13% of patients prior to repeat revascularization. Persistence of reduced or progressive worsening of cerebrovascular reserve capacity (CVRC) compared with preoperative status was observed in 85% of repeat revascularization cases. Intermediate-flow bypass using a radial artery graft was most commonly used for repeat revascularization (60%) followed by re-superficial temporal artery to middle cerebral artery (re-STA-MCA) bypass (26%). High-flow bypass using a saphenous vein graft and using an occipital artery to MCA bypass was each used once. Following repeat revascularization, no new ischemic events were recorded.Conclusion: Overall, repeat revascularization is needed only in a small percentage of the cases in MMV. A rescue surgery should be considered in those with neurological symptoms and decreased CVRC. Intermediate-flow bypass using a radial artery graft is a reliable technique for patients requiring repeat revascularization. Based on our institutional experience, we propose an algorithm for guiding the decision process in cases of bypass failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.