SummaryEnvironmentally extended multiregional input-output (EE MRIO) tables have emerged as a key framework to provide a comprehensive description of the global economy and analyze its effects on the environment. Of the available EE MRIO databases, EXIOBASE stands out as a database compatible with the System of Environmental-Economic Accounting (SEEA) with a high sectorial detail matched with multiple social and environmental satellite accounts. In this paper, we present the latest developments realized with EXIOBASE 3-a time series of EE MRIO tables ranging from 1995 to 2011 for 44 countries (28 EU member plus 16 major economies) and five rest of the world regions. EXIOBASE 3 builds upon the previous versions of EXIOBASE by using rectangular supply-use tables (SUTs) in a 163 industry by 200 products classification as the main building blocks. In order to capture structural changes, economic developments, as reported by national statistical agencies, were imposed on the available, disaggregated SUTs from EXIOBASE 2. These initial estimates were further refined by incorporating detailed data on energy, agricultural production, resource extraction, and bilateral trade. EXIOBASE 3 inherits the high level of environmental stressor detail from its precursor, with further improvement in the level of detail for resource extraction. To account for the expansion of the European Union (EU), EXIOBASE 3 was developed with the full EU28 country set (including the new member state Croatia). EXIOBASE 3 provides a unique tool for analyzing the dynamics of environmental pressures of economic activities over time.
Measuring progress towards sustainable development requires appropriate frameworks and databases. The System of Environmental-Economic Accounts (SEEA) is undergoing continuous refinement with these objectives in mind. In SEEA, there is a need for databases to encompass the global dimension of societal metabolism. In this paper, we OPEN ACCESSSustainability 2015, 7 139 focus on the latest effort to construct a global multi-regional input−output database (EXIOBASE) with a focus on environmentally relevant activities. The database and its broader analytical framework allows for the as yet most detailed insight into the production-related impacts and "footprints" of our consumption. We explore the methods used to arrive at the database, and some key relationships extracted from the database.
Summary This contribution presents the state of the art of economy‐wide material flow accounting. Starting from a brief recollection of the intellectual and policy history of this approach, we outline system definition, key methodological assumptions, and derived indicators. The next section makes an effort to establish data reliability and uncertainty for a number of existing multinational (European and global) material flow accounting (MFA) data compilations and discusses sources of inconsistencies and variations for some indicators and trends. The results show that the methodology has reached a certain maturity: Coefficients of variation between databases lie in the range of 10% to 20%, and correlations between databases across countries amount to an average R2 of 0.95. After discussing some of the research frontiers for further methodological development, we conclude that the material flow accounting framework and the data generated have reached a maturity that warrants material flow indicators to complement traditional economic and demographic information in providing a sound basis for discussing national and international policies for sustainable resource use.
Summary The international industrial ecology (IE) research community and United Nations (UN) Environment have, for the first time, agreed on an authoritative and comprehensive data set for global material extraction and trade covering 40 years of global economic activity and natural resource use. This new data set is becoming the standard information source for decision making at the UN in the context of the post‐2015 development agenda, which acknowledges the strong links between sustainable natural resource management, economic prosperity, and human well‐being. Only if economic growth and human development can become substantially decoupled from accelerating material use, waste, and emissions can the tensions inherent in the Sustainable Development Goals be resolved and inclusive human development be achieved. In this paper, we summarize the key findings of the assessment study to make the IE research community aware of this new global research resource. The global results show a massive increase in materials extraction from 22 billion tonnes (Bt) in 1970 to 70 Bt in 2010, and an acceleration in material extraction since 2000. This acceleration has occurred at a time when global population growth has slowed and global economic growth has stalled. The global surge in material extraction has been driven by growing wealth and consumption and accelerating trade. A material footprint perspective shows that demand for materials has grown even in the wealthiest parts of the world. Low‐income countries have benefited least from growing global resource availability and have continued to deliver primary materials to high‐income countries while experiencing few improvements in their domestic material living standards. Material efficiency, the amount of primary materials required per unit of economic activity, has declined since around 2000 because of a shift of global production from very material‐efficient economies to less‐efficient ones. This global trend of recoupling economic activity with material use, driven by industrialization and urbanization in the global South, most notably Asia, has negative impacts on a suite of environmental and social issues, including natural resource depletion, climate change, loss of biodiversity, and uneven economic development. This research is a good example of the IE research community providing information for evidence‐based policy making on the global stage and testament to the growing importance of IE research in achieving global sustainable development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.