The 14 N(p,γ) 15 O reaction is the slowest reaction of the carbon-nitrogen cycle of hydrogen burning and thus determines its rate. The precise knowledge of its rate is required to correctly model hydrogen burning in asymptotic giant branch stars. In addition, it is a necessary ingredient for a possible solution of the solar abundance problem by using the solar 13 N and 15 O neutrino fluxes as probes of the carbon and nitrogen abundances in the solar core. After the downward revision of its cross section due to a much lower contribution by one particular transition, capture to the ground state in 15 O, the evaluated total uncertainty is still 8%, in part due to an unsatisfactory knowledge of the excitation function over a wide energy range. The present work reports precise S-factor data at twelve energies between 0.357-1.292 MeV for the strongest transition, capture to the 6.79 MeV excited state in 15 O, and at ten energies between 0.479-1.202 MeV for the second strongest transition, capture to the ground state in 15 O. An R-matrix fit is performed to estimate the impact of the new data on astrophysical energies. The recently suggested slight enhancement of the 6.79 MeV transition at low energy could not be confirmed. The present extrapolated zero-energy S-factors are S6.79(0) = 1.24±0.11 keV barn and SGS(0) = 0.19±0.05 keV barn.
The miniaturized radiation camera MiniPIX TPX3 is designed for detailed and wide-range measurements of mixed-radiation fields present in many applications such as radiotherapy and space radiation in outer orbit. The highly integrated instrumentation utilizes a single connector for control and readout for flexible measurements and quick deployment. The device features an option to process the registered data on the same device with limited resolution and basic particle-type resolving power. A novel readout and data processing technique exploits the detector high granularity and double per-pixel signal electronics to measure and characterize radiation fields of high intensity over a wide range with basic particle-type discrimination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.