Current usage of electroencephalography (EEG) is limited to laboratory environments. Self-application of a multichannel wet EEG caps is practically impossible, since the application of state-of-the-art wet EEG sensors requires trained laboratory staff. We propose a novel EEG cap system with multipin dry electrodes overcoming this problem. We describe the design of a novel 24-pin dry electrode made from polyurethane and coated with Ag/AgCl. A textile cap system holds 97 of these dry electrodes. An EEG study with 20 volunteers compares the 97-channel dry EEG cap with a conventional 128-channel wet EEG cap for resting state EEG, alpha activity, eye blink artifacts and checkerboard pattern reversal visual evoked potentials. All volunteers report a good cap fit and good wearing comfort. Average impedances are below 150 kΩ for 92 out of 97 dry electrodes, enabling recording with standard EEG amplifiers. No significant differences are observed between wet and dry power spectral densities for all EEG bands. No significant differences are observed between the wet and dry global field power time courses of visual evoked potentials. The 2D interpolated topographic maps show significant differences of 3.52 and 0.44% of the map areas for the N75 and N145 VEP components, respectively. For the P100 component, no significant differences are observed. Dry multipin electrodes integrated in a textile EEG cap overcome the principle limitations of wet electrodes, allow rapid application of EEG multichannel caps by non-trained persons, and thus enable new fields of application for multichannel EEG acquisition.
In state-of-the-art electroencephalography (EEG) Silver/Silver-Chloride electrodes are applied together with electrolyte gels or pastes. Their application requires extensive preparation, trained medical staff and limits measurement time and mobility. We recently proposed a novel multichannel cap system for dry EEG electrodes for mobile and out-of-the-lab EEG acquisition. During the tests with these novel polymer-based multipin dry electrodes, we observed that the quality of the recording depends on the applied normal force and resulting contact pressure. Consequently, in this paper we systematically investigate the influence of electrode-skin contact pressure and electrode substrate flexibility on interfacial impedance and perceived wearing comfort in a study on 12 volunteers. The normal force applied to the electrode was varied between the minimum required force to achieve impedances and a maximum of 4 N, using a new force measurement applicator. We found that for a polymer shore hardness A98, with increasing normal force, the impedance decreases from and to and at frontal hairless and temporal hairy positions, respectively. Similar results were obtained for shore A90, A80, and A70. The best compromise of low and stable impedances as well as a good wearing comfort was determined for applied normal forces between 2 and 3 N using electrodes with shore A98 or A90. Our results provide the basis for improved EEG cap designs with optimal wearing comfort and recording quality for dry multipin electrodes, which will enable new fields of application for EEG.
A potential new area of routine application for electroencephalography (EEG) is the brain-computer interface, which might enable disabled people to interact with their environment, based on measured brain signals. However, conventional electroencephalography is not suitable here due to limitations arising from complicated, time-consuming and error-prone preparation. Recently, several approaches for dry electrodes have been proposed. Our aim is the comparison and assessment of three types of dry electrodes and standard wet silver/silver-chloride electrodes for EEG signal acquisition. We developed novel EEG electrodes with titanium and polyurethane as base materials, which were coated with nanometer sized titanium-nitride films. Furthermore gold multi-pin electrodes were arranged on printed circuit boards. The results of the comparison of these electrodes with conventional wet silver/silver-chloride electrodes in terms of electrode impedances are presented, as well as open circuit potentials and biosignal measurements. Impedances were significantly higher for all dry electrode types compared to wet electrodes, but still within the measurement range of today’s standard biosignal amplifiers. It was found that the novel dry titanium and polyurethane based electrodes show biosignal quality equivalent to conventional electrodes. In conclusion, the novel dry electrodes seem to be suitable for application in brain-machine interfaces.
Dry biosignal electrodes for electro-encephalography (EEG) are an essential step for realization of ubiquitous EEG monitoring and brain computer interface technologies. We propose a novel electrode design with a specific shape for hair layer interfusion and reliable skin contact. An electrically conductive Titanium-Nitride (TiN) thin layer is deposited on a polyurethane substrate using a multiphase DC magnetron sputtering technique. In the current paper we describe the development and manufacturing of the electrode. Furthermore, we perform comparative EEG measurements with conventional Ag/AgCl electrodes in a 6-channel setup. Our results are promising, as the primary shape of the EEG is preserved in the signals of both electrodes sets, according to recordings of spontaneous EEG and visual evoked potentials. The variance of both signals is in the same order of magnitude. The Wilcoxon-Mann-Whitney two-sample rank-sum test revealed no significant differences for 25 of the 28 compared signal episodes. Hence, our novel electrodes show equivalent signal quality compared to conventional Ag/AgCl electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.