Microplastics are ubiquitous pollutants in aquatic habitats and commonly found in the gut contents of fish yet relatively little is known about the retention of these particles by fish. In this study, goldfish were fed a commercial fish food pellet amended with 50 particles of one of two microplastics types, microbeads and microfibers. Microbeads were obtained from a commercial facial cleanser while microfibers were obtained from washed synthetic textile. Following consumption of the amended pellet, fish were allowed to feed to satiation on non-amended food followed by fasting for periods ranging from 1.5 h to 6 days. Fish sacrificed at different time points were dissected to remove gut contents and the digesta contents retention and microplastic retention was determined. Although a small number of microplastic particles were retained in fish GI-tracts after 6 days (0-3 particles/50), the retention of microplastics was generally similar to the retention of bulk digesta contents. According to a breakpoint regression model fitted to digesta contents and microplastic particles, the 50% and 90% evacuation times were 10 h and 33.4 h, respectively. The results of this study indicate that neither microbeads nor microfibers are likely to accumulate within the gut contents of fish over successive meals.
Diet assimilation efficiencies (AEs) of polychlorinated biphenyls (PCBs) absorbed to microplastics and food were determined in goldfish ( Carassius auratus). Microplastics were spiked with 14 environmentally rare PCBs and incorporated into fish pellets previously spiked with a technical PCB mixture (Aroclor 1254). Five diet treatments were created having microplastic contents of 0, 5, 10, 15, 20, and 25% and fed to fish within 24 h of the diet creation. Fish from each treatment were fed a microplastic amended food pellet and PCB AEs were determined by mass balance. Microplastic-associated PCBs had lower AEs (geomean 13.36%) compared to food matrix-associated PCBs (geomean 51.64%). There were interactions between PCB AEs and the microplastic content of the diet. PCBs affiliated with microplastics became more bioavailable with increasing microplastic content of food while food matrix-associated PCB bioavailability declined when microplastic contents exceeded 5%. Despite controlling for microplastic-food contact time, there was some evidence for redistribution of lower K food matrix-associated PCBs onto microplastics causing a decrease in their AE relative to nonplastic and low plastic containing diets. The low bioavailability of microplastic-associated PCBs observed in the present study provides further support to indicate that microplastics are unlikely to increase POPs bioaccumulation by fish in aquatic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.