No abstract
ObjectiveBest-practice data models harmonize semantics and data structure of medical variables in clinical or epidemiological studies. While there exist several published data sets, it remains challenging to find and reuse published eligibility criteria or other data items that match specific needs of a newly planned study or registry. A novel Internet-based method for rapid comparison of published data models was implemented to enable reuse, customization, and harmonization of item catalogs for the early planning and development phase of research databases.MethodsBased on prior work, a European information infrastructure with a large collection of medical data models was established. A newly developed analysis module called CDEGenerator provides systematic comparison of selected data models and user-tailored creation of minimum data sets or harmonized item catalogs. Usability was assessed by eight external medical documentation experts in a workshop by the umbrella organization for networked medical research in Germany with the System Usability Scale.ResultsThe analysis and item-tailoring module provides multilingual comparisons of semantically complex eligibility criteria of clinical trials. The System Usability Scale yielded “good usability” (mean 75.0, range 65.0–92.5). User-tailored models can be exported to several data formats, such as XLS, REDCap or Operational Data Model by the Clinical Data Interchange Standards Consortium, which is supported by the US Food and Drug Administration and European Medicines Agency for metadata exchange of clinical studies.ConclusionThe online tool provides user-friendly methods to reuse, compare, and thus learn from data items of standardized or published models to design a blueprint for a harmonized research database.
Intensive care unit readmissions are associated with mortality and bad outcomes. Machine learning could help to identify patients at risk to improve discharge decisions. However, many models are black boxes, so that dangerous properties might remain unnoticed. In this study, an inherently interpretable model for 3-day ICU readmission prediction was developed. We used a retrospective cohort of 15,589 ICU stays and 169 variables collected between 2006 and 2019. A team of doctors inspected the model, checked the plausibility of each component, and removed problematic parts. Qualitative feedback revealed several challenges for interpretable machine learning in healthcare. The resulting model used 67 features and showed an area under the precision-recall curve of 0.119±0.020 and an area under the receiver operating characteristic curve of 0.680±0.025. This is on par with state-of-the-art gradient boosting machines and outperforms the Simplified Acute Physiology Score II. External validation with the Medical Information Mart for Intensive Care database version IV confirmed our findings. Hence, a machine learning model for readmission prediction with a high level of human control is feasible without sacrificing performance.
Background The variety of medical documentation often leads to incompatible data elements that impede data integration between institutions. A common approach to standardize and distribute metadata definitions are ISO/IEC 11179 norm-compliant metadata repositories with top-down standardization. To the best of our knowledge, however, it is not yet common practice to reuse the content of publicly accessible metadata repositories for creation of case report forms or routine documentation. We suggest an alternative concept called pragmatic metadata repository, which enables a community-driven bottom-up approach for agreeing on data collection models. A pragmatic metadata repository collects real-world documentation and considers frequent metadata definitions as high quality with potential for reuse. Methods We implemented a pragmatic metadata repository proof of concept application and filled it with medical forms from the Portal of Medical Data Models. We applied this prototype in two use cases to demonstrate its capabilities for reusing metadata: first, integration into a study editor for the suggestion of data elements and, second, metadata synchronization between two institutions. Moreover, we evaluated the emergence of bottom-up standards in the prototype and two medical data managers assessed their quality for 24 medical concepts. Results The resulting prototype contained 466,569 unique metadata definitions. Integration into the study editor led to a reuse of 1836 items and item groups. During the metadata synchronization, semantic codes of 4608 data elements were transferred. Our evaluation revealed that for less complex medical concepts weak bottom-up standards could be established. However, more diverse disease-related concepts showed no convergence of data elements due to an enormous heterogeneity of metadata. The survey showed fair agreement (Kalpha = 0.50, 95% CI 0.43–0.56) for good item quality of bottom-up standards. Conclusions We demonstrated the feasibility of the pragmatic metadata repository concept for medical documentation. Applications of the prototype in two use cases suggest that it facilitates the reuse of data elements. Our evaluation showed that bottom-up standardization based on a large collection of real-world metadata can yield useful results. The proposed concept shall not replace existing top-down approaches, rather it complements them by showing what is commonly used in the community to guide other researchers.
A long-running goal of the clinical NLP community is the extraction of important variables trapped in clinical notes. However, roadblocks have included dataset shift from the general domain and a lack of public clinical corpora and annotations. In this work, we show that large language models, such as InstructGPT (Ouyang et al., 2022), perform well at zero-and few-shot information extraction from clinical text despite not being trained specifically for the clinical domain. Whereas text classification and generation performance have already been studied extensively in such models, here we additionally demonstrate how to leverage them to tackle a diverse set of NLP tasks which require more structured outputs, including span identification, token-level sequence classification, and relation extraction. Further, due to the dearth of available data to evaluate these systems, we introduce new datasets for benchmarking fewshot clinical information extraction based on a manual re-annotation of the CASI dataset (Moon et al., 2014) for new tasks 1 . On the clinical extraction tasks we studied, the GPT-3 systems significantly outperform existing zeroand few-shot baselines. vian Gainer, Henry C Chueh, Susanne Churchill, and Isaac Kohane. 2010. Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.