Background and purpose — Limb lengthening with an intramedullary motorized nail is a relatively new method. We investigated if lengthening nails are reliable constructs for limb lengthening and deformity correction in the femur and the tibia.Patients and methods — 50 lengthenings (34 Precice and 16 Fitbone devices) in 47 patients (mean age 23 years [11–61]) with ≥12 months follow-up are included in this study. 30 lengthenings were done due to congenital and 20 because of posttraumatic deformity (21 antegrade femora, 23 retrograde femora, 6 tibiae). Initial deformities included a mean shortening of 42 mm (25–90). In 15 patients, simultaneous axial correction was done using the retrograde nailing technique.Results — The planned amount of lengthening was achieved in all but 2 patients. 5 patients who underwent simultaneous axial correction showed minor residual deformity; unintentionally induced minor deformities were found in the frontal and sagittal plane. The consolidation index was 1.2 months/cm (0.6–2.5) in the femur and 2.5 months/cm (1.6–4.0) in the tibia. 2 femoral fractures occurred in retrograde femoral lengthenings after consolidation due to substantial trauma. There were 8 complications, all of which were correctable by surgery, with no permanent sequelae.Interpretation — Controlled acute axial correction of angular deformities and limb lengthening can be achieved by a motorized intramedullary nail. A thorough preoperative planning and intraoperative control of alignment are required to avoid residual and unintentionally induced deformity. In the femur relatively fast consolidation could be observed, whereas healing was slower in the tibia.
PurposeWe assessed whether an intramedullary lengthening device would reduce the problems normally associated with the external fixation technique. We also wanted to determine whether it is a reliable construct for limb lengthening and deformity correction in the femur.Patients and methods We conducted a matched-pair comparison of 30 femoral lengthenings, 15 with a motorized intramedullary nail (the nail group) and 15 lengthenings with an external ring fixator (the fixator group). The patients were matched based on age, sex, amount of lengthening, and the etiology of leg length discrepancy. Mean lengthening was 35 (25–55) mm in the nail group and 38 (15–75) mm in the fixator group. Outcome measures were: lengthening and alignment achieved, consolidation index, knee range of motion (ROM), and complications.Results The pairs in this matched-pair study were similar in terms of age, sex, diagnosis, and amount of lengthening. The planned amount of lengthening was achieved in all patients in both groups and axis correction was considered sufficient. The mean radiographic consolidation index in the nail group, at 1.5 (0.9–3.0) months/cm, was better than the mean value for the fixator group (1.9 (0.9–3.4) months/cm) (p = 0.01). Knee ROM was better in the nail group during the lengthening, 6 weeks after lengthening was completed, and 6 months after lengthening was completed (p < 0.001). A larger number of complications were observed in the fixator group than in the nail group.Interpretation A lengthening nail may be superior to external fixation in femoral lengthening, when the anatomical conditions and the complexity of the deformity allow the use of an intramedullary nail.
Background and purposeHexapod ring fixators such as the Taylor Spatial Frame (TSF) have shown good outcomes. However, there have only been a few studies comparing the use of TSF with various etiologies of the deformity. We compared the use of TSF in congenital and acquired deformities in children.Patients and methodsWe reviewed 213 lower extremity reconstructive procedures with the TSF in 192 patients who were operated between October 2000 and October 2015. 128 procedures (67 proximal tibiae, 51 distal femora, and 10 distal tibiae) in 117 children (median age 14 (4–18) years; 59 girls) fulfilled the inclusion criteria. 89 procedures were done in children with congenital deformities (group C) and 39 were done in children with acquired deformities (group A). Outcome parameters were lengthening and alignment achieved, lengthening index, complications, and analysis of residual deformity in a subgroup of patients.ResultsMean lengthening achieved was 3.9 (1.0–7.0) cm in group C and 3.7 (1.0–8.0) cm in group A (p = 0.5). Deformity parameters were corrected to satisfaction in all but 3 patients, who needed further surgery for complete deformity correction. However, minor residual deformity was common in one-third of the patients. The mean lengthening index was 2.2 (0.8–10) months/cm in group C and 2.0 (0.8–6) months/cm in group A (p = 0.7). Isolated analysis of all tibial and femoral lengthenings showed similar lengthening indices between groups. Complication rates and the need for secondary surgery were much greater in the group with congenital deformities.InterpretationThe TSF is an excellent tool for the correction of complex deformities in children. There were similar lengthening indices in the 2 groups. However, congenital deformities showed a high rate of complications, and should therefore be addressed with care.
Distraction osteogenesis biologically resembles fracture healing with distinctive characteristics notably in the distraction phase of osteogenesis. In the latency phase of bone lengthening, like in the inflammatory phase of fracture repair, interleukines are released and act with growth factors released from platelets in the local haematoma, leading to attraction, proliferation and differentiation of mesenchymal stem cells into osteoblasts and other differentiated mesenchymal cells. These in turn produce matrix, collagen fibers and growth factors. A callus containing cells, collagen fibers, osteoid and cartilage matrix is formed. Provided stable fixation, distraction will trigger intramembranous bone formation. As distraction proceeds, the distraction gap develops five distinctive zones with unmineralized bone in the middle, remodelling bone peripherally, and mineralizing bone in between. During consolidation, the high concentration of anabolic growth factors in the regenerate diminishes with time as remodelling takes over to form mature cortical and cancellous bone. Systemic disease, congenital bone deficiencies, medications and substance abuse can influence the quality and quantity of regenerate bone, usually in a negative way. The regenerate bone can be manipulated when needed by using injection of mesenchymal stem cells and platelets, growth factors (BMP-2 and -7), and systemic medications (bisphosphonates and parathyroid hormone). Growth factors and systemic anabolic and antiresorptive drugs are prescribed on special indications, while distraction osteogenesis is not an authorized indication. To some extent, however, these compounds can be used off-label. Use in children presents special problems since growth factors and specific anabolic medications may involve a risk of inducing cancer.
PurposeWe assessed the radiographic changes of the acetabulum during the course of Perthes’ disease and investigated whether they were associated with femoral head sphericity 5 years after diagnosis.MethodsWe studied 123 children with unilateral Perthes’ disease, femoral head necrosis more than 50 % and age at diagnosis 6 years or older. Pelvic radiographs were taken at onset, 1 year and 5 years after diagnosis. Sharp’s angle, acetabular depth-to-width ratio (ADR) and lateral acetabular inclination were measured.ResultsCompared to the unaffected hips, the Perthes’ hips developed significantly higher Sharp’s angles (p < 0.001) and a higher proportion with an upward-sloping lateral acetabular margin (Perthes’ hips: 49 %, unaffected hips 1 %). The mean ADR values were significantly lower on the affected side at all stages (p < 0.001). ADR values at diagnosis were associated with a more spherical femoral head at the 5-year follow-up [odds ratio (OR) 1.012, 95 % confidence interval (CI) 1.002–1.022, p = 0.016]. None of the other acetabular parameters were significantly associated with the femoral head shape 5 years after diagnosis.ConclusionThe acetabulum developed an increasingly dysplastic shape in the course of Perthes’ disease. Early dysplastic changes of the acetabulum were not associated with a poor radiological outcome 5 years after diagnosis. Routine measurement and monitoring of acetabular changes in plain radiographs were of little prognostic value and can, therefore, hardly be recommended in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.