The retrograde transport inhibitor Retro-2 has a protective effect on cells and in mice against Shiga-like toxins and ricin. Retro-2 causes toxin accumulation in early endosomes, and relocalization of the Golgi SNARE protein syntaxin-5 to the endoplasmic reticulum. The molecular mechanisms by which this is achieved remain unknown. Here, we show that Retro-2 targets the endoplasmic reticulum exit site component Sec16A, affecting anterograde transport of syntaxin-5 from the endoplasmic reticulum to the Golgi. The formation of canonical SNARE complexes involving syntaxin-5 is not affected in Retro-2-treated cells. In contrast, the interaction of syntaxin-5 with a newly discovered binding partner, the retrograde trafficking chaperone GPP130, is abolished, and we show that GPP130 must indeed bind to syntaxin-5 to drive Shiga toxin transport from endosomes to the Golgi. We thereby identify Sec16A as a druggable target, and provide evidence for a non-SNARE function for syntaxin-5 in interaction with the GPP130.
Antigen-presenting cells have the remarkable capacity to transfer exogenous antigens to the cytosol for processing by proteasomes and subsequent presentation on major histocompatibility complex class-I (MHC-I) molecules, a process termed cross-presentation. This is the target of biomedical approaches that aim to trigger a therapeutic immune response. The receptor-binding B-subunit of Shiga toxin (STxB) has been developed as an antigen delivery tool for such immunotherapy applications. In this study, we have analyzed pathways and trafficking factors that are involved in this process. A covalent conjugate between STxB and saporin was generated to quantitatively sample the membrane translocation step to the cytosol in differentiated monocyte-derived THP-1 cells. We have found that retrograde trafficking to the Golgi complex was not required for STxBsaporin translocation to the cytosol or for STxB-dependent antigen cross-presentation. Depletion of endosomal Rab7 inhibited, and lowering membrane cholesterol levels favored STxB-saporin translocation. Interestingly, experiments with reducible and nonreducible linker-arm-STxB conjugates led to the conclusion that after translocation, STxB remains associated with the cytosolic membrane leaflet. In summary, we report new facets of the endosomal escape process bearing relevance to antigen cross-presentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.