To broaden the applicability of chemically modified DNAs in nano- and biotechnology, material science, sensor development, and molecular recognition, strategies are required for introducing a large variety of different modifications into the same nucleic acid sequence at once. Here, we investigate the scope and limits for obtaining functionalized dsDNA by primer extension and PCR, using a broad variety of chemically modified deoxynucleotide triphosphates (dNTPs), DNA polymerases, and templates. All natural nucleobases in each strand were substituted with up to four different base-modified analogues. We studied the sequence dependence of enzymatic amplification to yield high-density functionalized DNA (fDNA) from modified dNTPs, and of fDNA templates, and found that GC-rich sequences are amplified with decreased efficiency as compared to AT-rich ones. There is also a strong dependence on the polymerase used. While family A polymerases generally performed poorly on "demanding" templates containing consecutive stretches of a particular base, family B polymerases were better suited for this purpose, in particular Pwo and Vent (exo-) DNA polymerase. A systematic analysis of fDNAs modified at increasing densities by CD spectroscopy revealed that single modified bases do not alter the overall B-type DNA structure, regardless of their chemical nature. A density of three modified bases induces conformational changes in the double helix, reflected by an inversion of the CD spectra. Our study provides a basis for establishing a generally applicable toolbox of enzymes, templates, and monomers for generating high-density functionalized DNAs for a broad range of applications.
Fluorescence correlation spectroscopy (FCS) has proven to be a powerful technique with single-molecule sensitivity. Recently, it has found a complement in the form of fluorescence intensity distribution analysis (FIDA). Here we introduce a fluorescence fluctuation method that combines the features of both techniques. It is based on the global analysis of a set of photon count number histograms, recorded with multiple widths of counting time intervals simultaneously. This fluorescence intensity multiple distributions analysis (FIMDA) distinguishes fluorescent species on the basis of both the specific molecular brightness and the translational diffusion time. The combined information, extracted from a single measurement, increases the readout effectively by one dimension and thus breaks the individual limits of FCS and FIDA. In this paper a theory is introduced that describes the dependence of photon count number distributions on diffusion coefficients. The theory is applied to a series of photon count number histograms corresponding to different widths of counting time intervals. Although the ability of the method to determine specific brightness values, diffusion times, and concentrations from mixtures is demonstrated on simulated data, its experimental utilization is shown by the determination of the binding constant of a protein-ligand interaction exemplifying its broad applicability in the life sciences.
The reaction catalyzed by all-trans-retinol dehydrogenase of rod outer segments completes the quenching of photoactivated rhodopsin and initiates the cycle of reactions leading to regeneration of visual pigment. The goal of this study was to determine the kinetic parameters of the dehydrogenase at physiological levels of bleaching, to investigate its specificity, and to determine its possible role in modulating phototransduction. Reduction of all-trans-retinal could be measured after bleaching < 0.15% rhodopsin. Kinetic parameters for the forward reaction determined with endogenous all-trans-retinal were Km = 1.1 microM; Vmax = 7 nmol/min/mg rhodopsin. The low enzymatic activity suggests that at high bleach rates, all-trans-retinal could accumulate, increasing the steady state level of bleaching intermediates or promoting formation of pseudophotoproducts. Active pseudophotoproducts, which stimulate Gt activation and opsin phosphorylation by rhodopsin kinase, are formed with opsin and all-trans-retinal as well as retinal analogues lacking the 13 methyl or the terminal two carbons of the polyene chain. Addition of all-trans-retinol, NADP, and [32P]ATP to rod outer segments increased rhodopsin phosphorylation. Kinetic parameters for the reverse reaction determined with exogenous all-trans-retinol were Km = 10 microM; Vmax = 11 nmol/min/mg rhodopsin. Our results support the hypothesis that all-trans-retinol dehydrogenase could influence the phototransduction cascade, including activities of Gt, rhodopsin kinase, and binding of arrestin, by impeding the recycling of rhodopsin at high bleach levels.
In rhodopsin, the 11-cis-retinal chromophore forms a complex with Lys296 of opsin via a protonated Schiff base. Absorption of light initiates the activation of rhodopsin by cis/trans photoisomerization of retinal. Thermal relaxation through different intermediates leads into the metarhodopsin states which bind and activate transducin (Gt) and rhodopsin kinase (RK). all-trans-Retinal also recombines with opsin independent of light, forming activating species of the receptor. In this study, we examined the mechanism by which all-trans-retinal activates opsin. To exclude other amines except active site Lys296 from formation of Schiff bases, we reductively methylated rhodopsin (PM-rhodopsin), which we then bleached to generate PM-opsin. Using spectroscopic methods and a Gt activation assay, we found that all-trans-retinal interacted with PM-opsin, producing a noncovalent complex that activated Gt. The residual nucleotide exchange in Gt catalyzed by opsin was approximately 1/250 lower relative to that of photoactivated rhodopsin (pH 8.0, 23 degrees C). Addition of equimolar all-trans-retinal led to an occupancy of one-tenth of the putative retinal binding site(s) of opsin and enhanced the Gt activation rate 2-fold. When the concentration of all-trans-retinal was increased to saturation, the Gt activation rate of the opsin/all-trans-retinal complex was approximately 1/33 lower compared to that of photoactivated rhodopsin. We conclude that all-trans-retinal can form a noncovalent complex with opsin that activates Gt by different mechanisms than photolyzed rhodopsin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.