The water intake of 41 lactating dairy cows managed according to current dairy farm practices was individually and continuously monitored to 1) investigate drinking behavior and 2) determine factors affecting water intake. The cows were housed in a free-stall barn and fed once daily with a corn silage and concentrate-based total mixed ration (48% dry matter content; 20.6 +/- 3.3 kg/d of dry matter intake). Cows were milked twice daily, with a yield of 26.5 +/- 5.9 kg/d. The daily free water intake (FWI) was 83.6 +/- 17.1 L, achieved during 7.3 +/- 2.8 drinking bouts. The drinking bout water intake was 12.9 +/- 5.0 L. Almost three-fourths of the FWI occurred during working hours (0600 to 1900 h). Consumption peaks corresponded to feeding and milking times. More than one quarter of the daily FWI was met during the 2 h after each milking. About 75% of the present cows visited the watering point at least once during the 2 h after the evening milking. It is probable that drinking behavior evolved with lactation, but further studies are required to identify the relationship between lactation stage and drinking behavior. The most relevant factors affecting the daily FWI of lactating cows were best combined according to the following predictive equation: (R(2) = 0.45; n = 41 cows, n = 1,837): FWI, L/d = 1.53 x dry matter intake (kg/d) + 1.33 x milk yield (kg/d) + 0.89 x dry matter content (%) + 0.57 x minimum temperature ( degrees C) - 0.30 x rainfall (mm/d) - 25.65. The results obtained using these equations were in agreement with the equations developed by other researchers.
Human activities produce polluting compounds such as persistent organic pollutants (POPs), which may interact with agriculture. These molecules have raised concern about the risk of transfer through the food chain via the animal product. POPs are characterised by a strong persistence in the environment, a high volatility and a lipophilicity, which lead to their accumulation in fat tissues. These compounds are listed in international conventions to organise the information about their potential toxicity for humans and the environment. The aim of this paper is to synthesise current information on dairy ruminant exposure to POPs and the risk of their transfer to milk. Three major groups of POPs have been considered: the polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), the polychlorobiphenyls (PCBs) and the polycyclic aromatic hydrocarbons (PAHs). The results show that contamination of fodder and soil by these compounds is observed when they are exposed to emission sources (steelworks, cementworks, waste incinerators or motorways) compared with remote areas. In general, soil contamination is considered higher than plant contamination. Highest concentrations of POPs in soil may be close to 1000 ng/kg dry matter (DM) for PCDD/Fs, to 10 000 mg/kg DM for PAHs and 100 μg/kg DM for PCBs. The contamination of milk by POPs depends on environmental factors, factors related to the rearing system (fodder and potentially contaminated soil, stage of lactation, medical state of the herd) and of the characteristics of the contaminants. Transfer rates to milk have been established: for PCBs the rate of transfer varies from 5% to 90%, for PCDD/Fs from 1% to 40% and for PAHs from 0.5% to 8%. The differential transfer of the compounds towards milk is related to the hydrophobicity of the pollutants as well as to the metabolic susceptibility of the compounds.
The transfer of POPs in food of animal origin has been studied by a meta-analysis of 28 peer-reviewed articles using transfer rate (TR) for milk and eggs and bioconcentration factors (BCF) for eligible tissues after establishing an adapted methodology. TRs of the most toxic PCDD/Fs into milk were generally elevated and even higher into eggs. BCFs in excreting adult animals varied widely between studies complicating to hierarchize tissues or congeners, even if liver and fat seemed to bioconcentrate more than lean tissues. Short time studies have clearly shown low BCFs contrarily to field studies showing the highest BCFs. The BCFs of PCDD/Fs in growing animals were higher in liver than in fat or muscle. In contrast to easily bioconcentrating hexachlorinated congeners, octa-and heptachlorinated congeners barely bioconcentrate. PCB transfer into milk and eggs was systematically high for very lipophilic congeners. Highly ortho-chlorinated PCBs were transferred >50% into milk and eggs and even >70% for congeners 123 and 167 into eggs. BCFs of the most toxic PCBs 126 and 169 were significantly higher than for less toxic congeners. BCFs seem generally low in PBDEs except congeners 47, 153 and 154. DDT and its metabolites showed high bioconcentration. Differences between tissues appeared but were masked by a study effect. In addition to some methodologic recommendations, this analysis showed the high transfer of POPs into eggs, milk and liver when animals were exposed justifying a strong monitoring in areas with POP exposure.
The aim of this study was to determine the transfer kinetics of soil-bound polycyclic aromatic hydrocarbons to milk in lactating cows. Soil (500 g/day) fortified with fluorene (104 microg/g dry soil), phenanthrene (82 microg/g), pyrene (78 microg/g), and benzo[a]pyrene (33 microg/g) was administered to three dairy cows via a rumen cannulas for 28 consecutive days. Parent compounds and their major metabolites in milk were measured using gas chromatography-mass spectrometry. Secretion of parent compounds in milk did not increase significantly (P > 0.05) over the control values measured before supply. Target monohydroxylated metabolites were not detected in control samples, but 2-hydroxy fluorene, 3-hydroxy phenanthrene, and 1-hydroxy pyrene were present in milk by the second day of dosing. The highest concentrations of metabolites in milk (31-39 ng/mL) were for 1-hydroxy pyrene at days 7 and 14 of dosing. The observed plateaus for 3-hydroxy phenanthrene and 2-hydroxy fluorene were lower (respectively, 0.69 and 2.79 ng/mL) but significantly increased in comparison to the control samples. Contrarily, 3-hydroxy benzo[a]pyrene was not detected in milk at any sampling time. These results suggested a notable metabolism of the parent compounds after their extraction from soil during the digestive transfer. Thus, the metabolization of fluorene and pyrene can lead to higher concentrations of metabolites than of parent compounds in milk. Despite the absence of a significant transfer of parent PAHs to milk, the appearance of metabolites raises the questions of their impact on human health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.