Background and ObjectivesTo determine the real-world use of rituximab in autoimmune encephalitis (AE) and to correlate rituximab treatment with the long-term outcome.MethodsPatients with NMDA receptor (NMDAR)-AE, leucine-rich glioma-inactivated-1 (LGI1)- AE, contactin-associated protein-like-2 (CASPR2)-AE, or glutamic acid decarboxylase 65 (GAD65) disease from the GErman Network for Research on AuToimmune Encephalitis who had received at least 1 rituximab dose and a control cohort of non–rituximab-treated patients were analyzed retrospectively.ResultsOf the 358 patients, 163 (46%) received rituximab (NMDAR-AE: 57%, CASPR2-AE: 44%, LGI1-AE: 43%, and GAD65 disease: 37%). Rituximab treatment was initiated significantly earlier in NMDAR- and LGI1-AE (median: 54 and 155 days from disease onset) compared with CASPR2-AE or GAD65 disease (median: 632 and 1,209 days). Modified Rankin Scale (mRS) scores improved significantly in patients with NMDAR-AE, both with and without rituximab treatment. Although being more severely affected at baseline, rituximab-treated patients with NMDAR-AE more frequently reached independent living (mRS score ≤2) (94% vs 88%). In LGI1-AE, rituximab-treated and nontreated patients improved, whereas in CASPR2-AE, only rituximab-treated patients improved significantly. No improvement was observed in patients with GAD65 disease. A significant reduction of the relapse rate was observed in rituximab-treated patients (5% vs 13%). Detection of NMDAR antibodies was significantly associated with mRS score improvement. A favorable outcome was also observed with early treatment initiation.DiscussionWe provide real-world data on immunosuppressive treatments with a focus on rituximab treatment for patients with AE in Germany. We suggest that early and short-term rituximab therapy might be an effective and safe treatment option in most patients with NMDAR-, LGI1-, and CASPR2-AE.Class of EvidenceThis study provides Class IV evidence that rituximab is an effective treatment for some types of AE.
-Conventional anti-Parkinsonian dopamine replacement therapy is often complicated by side effects that limit the use of these medications. There is a continuing need to develop nondopaminergic approaches to treat Parkinsonism. One such approach is to use medications that normalize dopamine depletion-related firing abnormalities in the basal ganglia-thalamocortical circuitry. In this study, we assessed the potential of a specific T-type calcium channel blocker (ML218) to eliminate pathologic burst patterns of firing in the basal gangliareceiving territory of the motor thalamus in Parkinsonian monkeys. We also carried out an anatomical study, demonstrating that the immunoreactivity for T-type calcium channels is strongly expressed in the motor thalamus in normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys. At the electron microscopic level, dendrites accounted for Ͼ90% of all tissue elements that were immunoreactive for voltage-gated calcium channel, type 3.2-containing T-type calcium channels in normal and Parkinsonian monkeys. Subsequent in vivo electrophysiologic studies in awake MPTP-treated Parkinsonian monkeys demonstrated that intrathalamic microinjections of ML218 (0.5 l of a 2.5-mM solution, injected at 0.1-0.2 l/min) partially normalized the thalamic activity by reducing the proportion of rebound bursts and increasing the proportion of spikes in non-rebound bursts. The drug also attenuated oscillatory activity in the 3-13-Hz frequency range and increased gamma frequency oscillations. However, ML218 did not normalize Parkinsonism-related changes in firing rates and oscillatory activity in the beta frequency range. Whereas the described changes are promising, a more complete assessment of the cellular and behavioral effects of ML218 (or similar drugs) is needed for a full appraisal of their anti-Parkinsonian potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.