Analysis of 179 new Ebola virus sequences from patient samples collected in Guinea between March 2014 and January 2015 shows how different lineages evolved and spread in West Africa. Supplementary information The online version of this article (doi:10.1038/nature14594) contains supplementary material, which is available to authorized users.
We assessed the potential of Calcium (Ca) isotope fractionation measurements in blood (δ 44/42 Ca Blood ) and urine (δ 44/42 Ca Urine ) as a new biomarker for the diagnosis of osteoporosis. One hundred post-menopausal women aged 50 to 75 years underwent dual-energy X-ray absorptiometry (DXA), the gold standard for determination of bone mineral density. After exclusion of women with kidney failure and vitamin D deficiency (<25 nmol/l) 80 women remained in the study. Of these women 14 fulfilled the standard diagnostic criteria for osteoporosis based on DXA. Both the δ 44/42 Ca Blood ( p < 0.001) and δ 44/42 Ca Urine ( p = 0.004) values were significantly different in women with osteoporosis (δ 44/42 Ca Blood : −0.99 ± 0.10‰, δ 44/42 Ca Urine : +0.10 ± 0.21‰, (Mean ± one standard deviation (SD), n = 14)) from those without osteoporosis (δ 44/42 Ca Blood : −0.84 ± 0.14‰, δ 44/42 Ca Urine : +0.35 ± 0.33‰, (SD), n = 66). This corresponded to the average Ca concentrations in morning spot urine samples ([Ca] Urine ) which were higher ( p = 0.041) in those women suffering from osteoporosis ([Ca] Urine-Osteoporosis : 2.58 ± 1.26 mmol/l, (SD), n = 14) than in the control group ([Ca] Urine - Control : 1.96 ± 1.39 mmol/l, (SD), n = 66). However, blood Ca concentrations ([Ca] Blood ) were statistically indistinguishable between groups ([Ca] Blood , control: 2.39 ± 0.10 mmol/l (SD), n = 66); osteoporosis group: 2.43 ± 0.10 mmol/l (SD, n = 14) and were also not correlated to their corresponding Ca isotope compositions. The δ 44/42 Ca Blood and δ 44/42 Ca Urine values correlated significantly ( p = 0.004 to p = 0.031) with their corresponding DXA data indicating that both Ca isotope ratios are biomarkers for osteoporosis. Furthermore, Ca isotope ratios were significantly correlated to other clinical parameters ([Ca] Urine , ([Ca] Urine/ Creatinine)) and biomarkers (CRP, CTX/P1NP) associated with bone mineralization and demineralization. From regression analysis it can be shown that the δ 44/42 Ca Blood values are the best biomarker for osteoporosis and that no other clinical parameters need to be ta...
There is a need for a panel of suitable biomarkers for detection of environmental chemical exposure leading to the initiation or progression of degenerative diseases or potentially, to cancer. As the peripheral blood may contain increased levels of circulating cell-free DNA in diseased individuals, we aimed to evaluate this DNA as effect biomarker recognizing vulnerability after exposure to environmental chemicals. We recruited 164 individuals presumably exposed to halo-alkane-based pesticides. Exposure evaluation was based on human biomonitoring analysis; as biomarker of exposure parent halo-methanes, -ethanes and their metabolites, as well as the hemoglobin-adducts methyl valine and hydroxyl ethyl valine in blood were used, complemented by expert evaluation of exposure and clinical intoxication symptoms as well as a questionnaire. Assessment showed exposures to halo alkanes in the concentration range being higher than non-cancer reference doses (RfD) but (mostly) lower than the occupational exposure limits. We quantified circulating DNA in serum from 86 individuals with confirmed exposure to off-gassing halo-alkane pesticides (in storage facilities or in home environment) and 30 non-exposed controls, and found that exposure was significantly associated with elevated serum levels of circulating mitochondrial DNA (in size of 79 bp, mtDNA-79, p = 0.0001). The decreased integrity of mtDNA (mtDNA-230/mtDNA-79) in exposed individuals implicates apoptotic processes (p = 0.015). The relative amounts of mtDNA-79 in serum were positively associated with the lag-time after intoxication to these chemicals (r = 0.99, p<0.0001). Several months of post-exposure the specificity of this biomarker increased from 30% to 97% in patients with intoxication symptoms. Our findings indicate that mitochondrial DNA has a potential to serve as a biomarker recognizing vulnerable risk groups after exposure to toxic/carcinogenic chemicals.
BackgroundAlthough ozone-depleting methyl bromide was destined for phase-out by 2005, it is still widely applied as a consequence of various critical-use-exemptions and mandatory international regulations aiming to restrict the spread of pests and alien species (e.g. in globalized transport and storage). The withdrawal of methyl bromide because of its environmental risk could fortuitously help in the containment of its human toxicity.MethodsWe performed a systematic review of the literature, including in vitro toxicological and epidemiological studies of occupational and community exposure to the halogenated hydrocarbon pesticide methyl bromide. We focused on toxic (especially chronic) or carcinogenic effects from the use of methyl bromide, on biomonitoring data and reference values. Eligible epidemiological studies were subjected to meta-analysis.ResultsOut of the 542 peer reviewed publications between 1990-2011, we found only 91 referring to toxicity of methyl bromide and 29 using the term "carcinogenic", "neoplastic" or "mutagenic". Several studies provide new additional data pertaining to the mechanistic aspects of methyl bromide toxicity. Few studies have performed a detailed exposure assessment including biomonitoring. Three evaluated epidemiological studies assessed a possible association between cancer and methyl bromide. Overall, exposure to methyl bromide is associated with an increased risk of prostate cancer OR, 1.21; 95% CI (0,98-1.49), P = 0.076. Two epidemiological studies have analyzed environmental, non-occupational exposure to methyl bromide providing evidence for its health risk to the general public. None of the epidemiological studies addressed its use as a fumigant in freight containers, although recent field and case reports do refer to its toxic effects associated with its use in shipping and storage.ConclusionsBoth the epidemiological evidence and toxicological data suggest a possible link between methyl bromide exposure and serious health problems, including prostate cancer risk from occupational and community exposure. The environmental risks of methyl bromide are not in doubt, but also its health risks, especially for genetically predisposed subjects, should not be underestimated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.