The use of solar radiation in the urban environment is becoming increasingly important for the sustainable development of cities and human societies. Several factors influence the distribution of solar radiation in urban areas, including urban morphology and the physical properties of urban materials. Most of these factors can be modeled with a relatively high accuracy using 2D and 3D solar radiation models. In this paper, the r.sun and v.sun solar radiation models are used to calculate solar radiation for the city of Košice in Eastern Slovakia to assess the accuracy of both approaches for vertical surfaces frequently found in urban areas. The results were validated by pyranometer measurements. The results showed relatively good estimates by the 3D v.sun model and poor estimates by the 2D r.sun model. This can be attributed to an improper representation of vertical surfaces by a digital surface model, which has a strong impact on solar resource assessments. We found that 3D city models prepared in level of detail 2 (LoD2) are not always adequate in case of complex buildings with morphological structures, such as terraces. These cast shadows on facades especially when solar altitude is high and, thus, assessments, even by a 3D model, are inaccurate.
Land surface temperature (LST) in urban areas is a dynamic phenomenon affected by various factors such as solar irradiance, cloudiness, wind or urban morphology. The problem complexity requires a comprehensive geographic information system (GIS)-based approach. Our solution is based on solar radiation tools, a high-resolution digital surface model of urban areas, spatially distributed data representing thermal properties of urban surfaces and meteorological conditions. The methodology is implemented in GRASS GIS using shell scripts. In these shell scripts, the r.sun solar radiation model was used to calculate the effective solar irradiance for selected time horizons during the day. The calculation accounts for attenuation of beam solar irradiance by clouds estimated by field measurements. The suggested algorithm accounts for heat storage in urban structures depending on their thermal properties and geometric configuration. Computed land surface temperature was validated using field measurements of LST in 10 locations within the study area. The study confirmed the applicability of our approach with an acceptable accuracy expressed by the root mean square error of 3.45 K. The proposed approach has the advantage of providing high spatial detail coupled with the flexibility of GIS to evaluate various geometrical and land surface properties for any daytime horizon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.