The data we report in this study concern the types, location, numbers, forms, and composition of microscopic huntingtin aggregates in brain tissues from humans with different grades of Huntington's disease (HD). We have developed a fusion protein antibody against the first 256 amino acids that preferentially recognizes aggregated huntingtin and labels many more aggregates in neuronal nuclei, perikarya, and processes in human brain than have been described previously. Using this antibody and human brain tissue ranging from presymptomatic to grade 4, we have compared the numbers and locations of nuclear and neuropil aggregates with the known patterns of neuronal death in HD. We show that neuropil aggregates are much more common than nuclear aggregates and can be present in large numbers before the onset of clinical symptoms. There are also many more aggregates in cortex than in striatum, where they are actually uncommon. Although the striatum is the most affected region in HD, only 1-4% of striatal neurons in all grades of HD have nuclear aggregates. Neuropil aggregates, which we have identified by electron microscopy to occur in dendrites and dendritic spines, could play a role in the known dendritic pathology that occurs in HD. Aggregates increase in size in advanced grades, suggesting that they may persist in neurons that are more likely to survive. Ubiquitination is apparent in only a subset of aggregates, suggesting that ubiquitin-mediated proteolysis of aggregates may be late or variable.
Huntington's disease (HD) is a progressive neurodegenerative illness for which there is no effective therapy. We examined whether creatine, which may exert neuroprotective effects by increasing phosphocreatine levels or by stabilizing the mitochondrial permeability transition, has beneficial effects in a transgenic mouse model of HD (line 6/2). Dietary creatine supplementation significantly improved survival, slowed the development of brain atrophy, and delayed atrophy of striatal neurons and the formation of huntingtin-positive aggregates in R6/2 mice. Body weight and motor performance on the rotarod test were significantly improved in creatine-supplemented R6/2 mice, whereas the onset of diabetes was markedly delayed. Nuclear magnetic resonance spectroscopy showed that creatine supplementation significantly increased brain creatine concentrations and delayed decreases in N-acetylaspartate concentrations. These results support a role of metabolic dysfunction in a transgenic mouse model of HD and suggest a novel therapeutic strategy to slow the pathological process.
The mechanism by which polyglutamine expansion in Huntington's disease (HD) results in selective neuronal degeneration remains unclear. We previously reported that the immunohistochemical distribution of N‐terminal huntingtin in HD does not correspond to the severity of neuropathology, such that significantly greater numbers of huntingtin aggregates are present within the cortex than in the striatum. We now show a dissociation between huntingtin aggregation and the selective pattern of striatal neuron loss observed in HD. Aggregate formation was predominantly observed in spared interneurons, with few or no aggregates found within vulnerable spiny striatal neurons. Multiple perikaryal aggregates were present in almost all cortical NADPH‐diaphorase neurons and in approximately 50% of the spared NADPH‐diaphorase striatal neurons from early grade HD cases. In severe grade HD patients, aggregates were more prominent as nuclear inclusions in NADPH‐diaphorase neurons, with less perikaryal and neuropil aggregation. In contrast, nuclear or perikaryal huntingtin aggregates were present in less than 4% of the vulnerable calbindin striatal neurons in all HD cases. These findings support the hypothesis that polyglutamine aggregation may not be a predictor of cell loss. Rather than a harbinger of neuronal death, mutant huntingtin aggregation may be a cytoprotective mechanism against polyglutamine‐induced neurotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.